Claim Missing Document
Check
Articles

Found 13 Documents
Search

Rancang Bangun Pendeteksi Kadar Formalin pada Mie Basah Menggunakan Sensor Warna TCS3200 : Design and Development of Formalin Contents Detection in Wet Noodles using Color Sensor TCS3200 Rani Laras Wati; Endang Rosdiana; Valentina Adimurti Kusumaningtyas
Jurnal Sains dan Kesehatan Vol. 3 No. 5 (2021): J. Sains Kes.
Publisher : Fakultas Farmasi, Universitas Mulawarman, Samarinda, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25026/jsk.v3i5.831

Abstract

Wet noodles have a short shelf life because they are spoiled more quickly by microorganisms. Therefore, some irresponsible wet noodle producers add formalin so that the noodles can last longer. However, formalin is a substance that is prohibited from being used because it is dangerous to health. In this research, an instrument has been made that can detect formalin levels in wet noodles which have formalin concentrations of 0 ppm, 40 ppm, 95 ppm and 150 ppm. The instrument consists of a TCS3200 color sensor and an ATmega328P microcontroller. The color detected by the TCS3200 sensor is the color from mixing the formalin wet noodle sample withreagent schiff's. Furthermore, the sample will be selected by the instrument based on the RGB color value detected by the TCS3200 color sensor. The test results obtained the reliability of the instrument in selecting the sample of formalin wet noodles with a concentration of 0 ppm worth 92.5%, 40 ppm worth 95%, 95 ppm worth 97.5% and 150 ppm worth 100%.
Pengontrolan Pemanfaatan Daun Kacang Babi dan Telur Keong Emas sebagai Nutrisi Alami pada Tanaman Cabai Hidroponik dengan Sistem NFT: Controlling the Utilization of Tephrosia vogelii leaves and Pomacea canaliculata eggs as Natural Nutrients in Hydroponic Chili Plants with the NFT System Endang Rosdiana; Rica Isma Ariij; Valentina Adimurti Kusumaningtyas
Jurnal Sains dan Kesehatan Vol. 4 No. 6 (2022): J. Sains Kes.
Publisher : Fakultas Farmasi, Universitas Mulawarman, Samarinda, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25026/jsk.v4i6.1325

Abstract

Salah satu efek  penggunaan nutrisi kimia AB-Mix dalam jangka panjang pada penanaman sistem hidroponik  adalah  tidak terserapnya seluruh unsur nutrisi tersebut oleh tanaman. Oleh karena itu perlu adanya upaya untuk mengganti nutrisi kimia tersebut dengan jenis nutrisi alami. Pada penelitian ini telah dibuat rancang bangun sistem kontrol nutrisi alami untuk tanaman cabai sistem hidroponik, yang mana nutrisi alaminya terbuat dari daun kacang babi dan telur keong emas. Pengontrolan dilakukan terhadap kadar pH dan TDS dimana setpointnya telah disesuaikan dengan pH dan kadar TDS tanaman cabai hidroponik. Dari hasil kalibrasi diperoleh akurasi sensor pH sebesar 99,8% dan sensor TDS sebesar 89,04%. Adapun hasil pengamatan tumbuh kembang tanaman cabai hidroponik hingga hari ke-57, untuk yang menggunakan protein alami diperoleh tinggi tanaman setinggi 29 cm, lebar daun 6,5 cm, dan panjang daun 12,23 cm, yang mengunakan AB-Mix diperoleh tinggi tanaman 15,5 cm, lebar daun 4,95 cm, dan panjang daun 9 cm, dan tanaman yang tumbuh dengan menggunakan media tanah dimana tinggi tanaman 4,25 cm, lebar daun 1,625 cm, dan panjang daun 2,6 cm.
CRYPTOCURRENCY TIME SERIES FORECASTING MODEL USING GRU ALGORITHM BASED ON MACHINE LEARNING Melina, Melina; Sukono, Sukono; Napitupulu, Herlina; Mohamed, Norizan; Herry Chrisnanto, Yulison; ID Hadiana, Asep; Kusumaningtyas, Valentina Adimurti
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 2 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss2pp1317-1328

Abstract

The cryptocurrency market is experiencing rapid growth in the world. The high fluctuation and volatility of cryptocurrency prices and the complexity of non-linear relationships in data patterns attract investors and researchers who want to develop accurate cryptocurrency price forecasting models. This research aims to build a cryptocurrency forecasting model with a machine learning-based time series approach using the gated recurrent units (GRU) algorithm. The dataset used is historical Bitcoin closing price data from January 1, 2017, to July 31, 2024. Based on the gap in previous research, the selected model is only based on the accuracy value. In this study, the chosen model must fulfill two criteria: the best-fitting model based on the learning curve diagnosis and the model with the best accuracy value. The selected model is used to forecast the test data. Model selection with these two criteria has resulted in high accuracy in model performance. This research was highly accurate for all tested models with MAPE < 10%. The GRU 30-50 model is best tested with MAE = 867.2598, RMSE = 1330.427, and MAPE = 1.95%. Applying the sliding window technique makes the model accurate and fast in learning the pattern of time series data, resulting in a best-fitting model based on the learning curve diagnosis.