Claim Missing Document
Check
Articles

Found 32 Documents
Search

Peranan Statistika dan Pengembangan Karakter dalam Menghadapi Tantangan Era Revolusi Industri 4.0 dan Big Data pada SMAN 1 Praya Agus Kurnia; Mustika Hadijati; Desy Komalasari; Nurul Fitriyani
Jurnal Gema Ngabdi Vol. 2 No. 1 (2020): Jurnal Gema Ngabdi
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jgn.v2i1.50

Abstract

The development of science and technology provides changes to every aspect of human life including social, economic, educational and industrial changes which are now entering stage 4.0. The Era of the Industrial Revolution 4.0 is identical to the Internet of Things which produces Big Data that cannot be processed with conventional devices and requires special analysis. These changes require human resource development in science, education and character in order to continue to compete with the global world, especially the younger generation who will fill the industrial forward. The problem arises because most of the educational outcomes lack a link and match or a good match between tertiary education which causes students to feel wrong about their majors or the incompatibility of their needs and abilities in the industrial world which makes it difficult for them to find a work. Therefore, coaching efforts are needed so that students can be aware and prepare themselves to improve their quality both by increasing hardskills and soft skills to meet these needs. This community service activity is carried out by SMAN 1 Praya as one of the best high schools and is a reference school in West Nusa Tenggara. The method used is the direct learning method that is evaluated using self-assessment techniques conducted by students using google form. Evaluation results show an increase in students' knowledge of statistics and character development needed in the face of the industrial revolution 4.0 and Big Data after they have participated in this dedication activity.
Pelatihan Pembuatan Media Pembelajaran Matematika Interaktif Berbasis Microsoft Powerpoint di MA Attamimy Lombok Tengah Zulhan Widya Baskara; Nurul Fitriyani; Mustika Hadijati; Lisa Harsyiah; Zulhan Widya Baskara
Jurnal Pengabdian Masyarakat Sains Indonesia Vol. 3 No. 2 (2021)
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (462.553 KB) | DOI: 10.29303/jpmsi.v3i2.147

Abstract

Madrasah Aliyah (MA) Attamimy adalah yang berada di bawah naungan Yayasan Pondok Pesantren Attamimy. MA Attamimy ini memiliki visi dan misi untuk melahirkan manusia-manusia yang berimtaq, berakhlak mulia, serta mampu bersaing menghadapi tantangan zaman global. Pada dasarnya, MA Attamimy ini telah memilki fasilitas komputer beserta akses internet yang cukup memadai, namun penggunaannya belum digunakan secara maksimal. Masalah lain yang juga terjadi adalah munculnya istilah mathematics phobia di kalangan siswa di MA Attamimy. Beberapa kesan negatif mengenai ilmu sains dan matematika ini mengharuskan penyampaian materi dan proses pembelajaran di kelas harus dikemas semenarik mungkin. Tujuan dilakukannya kegiatan Pengabdian kepada Masyarakat ini adalah dalam rangka pemanfaatan internet dan Microsoft PowerPoint dalam membuat media pembelajaran yang interaktif. Berdasarkan kegiatan Pengabdian kepada Masyarakat yang dilakukan di MA Attamimy, perlu untuk dilakukan kegiatan lanjutan sebagai bentuk kesinambungan kegiatan. Microsoft PowerPoint sendiri telah dimanfaatkan dalam membuat media pembelajaran interaktif oleh peserta kegiatan Pengabdian kepada Masyarakat, hanya saja perlu ditingkatkan pemanfaatan fitur-fitur, salah satunya fitur hyperlink, sehingga dapat meningkatkan kualitas pembelajaran.
Spline Truncated Multivariabel pada Permodelan Nilai Ujian Nasional di Kabupaten Lombok Barat Nurul Fitriyani; Lailia Awalushaumi; Agus Kurnia
Jurnal Matematika Vol 7 No 2 (2017)
Publisher : Mathematics Department, Faculty of Mathematics and Natural Sciences, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/JMAT.2017.v07.i02.p90

Abstract

Regression model is used to analyze the relationship between dependent variable and independent variable. If the regression curve form is not known, then the regression curve estimation can be done by nonparametric regression approach. This study aimed to investigate the relationship between the value resulted by National Examination and the factors that influence it. The statistical analysis used was multivariable truncated spline, in order to analyze the relationship between variables. The research that has been done showed that the best model obtained by using three knot points. This model produced a minimum GCV value of 44.46 and the value of determination coefficient of 58.627%. The parameter test showed that all factors used were significantly influence the National Examination Score for Senior High School students in West Lombok Regency year 2017. The variables were as follows: National Examination Score of Junior High School; School or Madrasah Examination Score; the value of Student’s Report Card; Student’s House Distance to School; and Number of Student’s Siblings.
CURVE ESTIMATION AND ESTIMATOR PROPERTIES OF THE NONPARAMETRIC REGRESSION TRUNCATED SPLINE WITH A MATRIX APPROACH NURUL FITRIYANI; I NYOMAN BUDIANTARA
E-Jurnal Matematika Vol 11 No 1 (2022)
Publisher : Mathematics Department, Faculty of Mathematics and Natural Sciences, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/MTK.2022.v11.i01.p362

Abstract

Regression analysis is one of the statistical analyses used to estimate the relationship between the predictor and the response variable. Data are given in pairs, and the relationship between the predictor and the response variable was assumed to follow a nonparametric regression model. This model is flexible in estimating the curve when a typical data pattern does not follow a specific pattern. The nonparametric regression curve was approached by using the truncated spline function with several knots. The truncated spline estimator in nonparametric regression is linear in the observation. It is highly dependent on the knot points. The regression model's random error is assumed to have an independent normal distribution with zero mean and equal variance. The truncated spline's curve estimate was obtained by minimizing the error model through the least squared optimization method. The nonparametric regression truncated spline's estimator properties are linear, unbiased, and if the error is normally distributed, the estimator is normally distributed.
Factor Extraction and Bicluster Analysis on Halal Destinations in Lombok Island Desy Komalasari; Mustika Hadijati; Nurul Fitriyani; Agus Kurnia
Jurnal Varian Vol 4 No 1 (2020)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/varian.v4i1.743

Abstract

Indonesia is one of the countries currently developing the concept of halal tourism. Halal tourism includes many variables that are related to each other, which need to be grouped into several main factors that affect tourist visits. This study was conducted to group the variables associated with halal tourism visits to Lombok Island using factor analysis and to classify sub-districts and halal tourism destinations on Lombok Island using the Plaid Bicluster algorithm. Based on the analysis using the main component extraction technique in factor analysis with varimax rotation, it can be concluded that the 9 halal tourism characteristic variables can be grouped into 2 main factors. Furthermore, by using the Plaid Bicluster algorithm, 2 Bicluster were produced. There were 7 sub-districts and 9 destinations formed in Bicluster I, and 8 sub-districts and 3 destinations formed in Bicluster II.
Spline and Kernel Mixed Nonparametric Regression for Malnourished Children Model in West Nusa Tenggara Muhammad Sopian Sauri; Mustika Hadijati; Nurul Fitriyani
Jurnal Varian Vol 4 No 2 (2021)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/varian.v4i2.1003

Abstract

Health sector development is essential to improve human life quality, especially in West Nusa Tenggara (NTB) Province. Based on data from the NTB Provincial Health Office from 2011 to 2016, children under five suffering from malnutrition continued to increase, caused by several factors that affected the incident. Therefore, appropriate analysis is needed to model children who suffer from malnutrition in NTB Province in 2016, consisting of 10 districts based on the variables that influence it. The analysis in this study was carried out using a nonparametric regression mixed-model spline truncated and kernel. The estimation of the nonparametric regression curve depends on the optimal knot points and bandwidths parameter. Therefore, in determining the optimal knot points and bandwidths obtained from Generalized Cross-Validation (GCV). Based on the analysis that has been done, we obtained a nonparametric regression mixed-model spline truncated and kernel optimal knot points, such as for each variable and optimum bandwidths, such as and , with the value of GCV. The mixed model acquired has a good model by considering the values of and MSE. Besides, the MAPE value indicated a high degree of accuracy, so that the model obtained has an excellent forecast.
Small Area Estimation dengan Metode Hierarchical Bayes pada Proporsi Destinasi Objek Wisata Halal Kabupaten Lombok Barat Husnul Arini; Desy Komalasari; Nurul Fitriyani
Eigen Mathematics Journal In Press Desember 2018
Publisher : University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (331.867 KB) | DOI: 10.29303/emj.v2i2.19

Abstract

Research using Hierarchical Bayes (HB) applied to Small Area Estimation (SAE) was conducted with the aim to estimate the proportion of halal tourism destination in West Lombok Regency. The development of halal taourism object in West Lombok that has been done by the Departement of Culture and Tourism, has not been fully able to do direct estimation on a small area, such as at the sub-district level. One way of obtaining estimation data up to the sub-district level is by increasing the sample size. However, increasing the sample size will cost time and money. Therefore, SAE method can be used to solve the poblem of data optimization. Furthermore, the HB method is used in the process of finding the expected alleged value. The prediction process was performed using Markov Chain Monte Carlo (MCMC) by applying the conditional Gibbs Algorithm of Metropolis-Hasting. Indirect modeling using HB method on SAE is based on the Fay-Herriot model for the area level with the help of supporting variables. The estimation results were then compared with the direct estimates with the value of the variance statistic as a benchmark. The results showed that the estimation using HB gave in a smaller average of variance value score of 0.021, compared with direct estimates with an average of variance value of 0.042. This showed that indirect estimation using HB method gave better result than using direct estimation method.
Estimasi Parameter Distribusi Mixture Eksponensial dan Weibull dengan Metode Bayesian Markov Chain Monte Carlo Ulfa Destiarina; Mustika Hadijati; Desy Komalasari; Nurul Fitriyani
Eigen Mathematics Journal Vol. 2 No. 1 Juni 2019
Publisher : University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (419.669 KB) | DOI: 10.29303/emj.v1i1.30

Abstract

Dalam estimasi parameter, kadangkala terdapat beberapa permasalahan yang menuntut penyelesaian dengan suatu distribusi mixture atau distribusi campuran. Penelitian ini bertujuan untuk menerapkan estimasi parameter distribusi mixture eksponensial dan Weibull pada data simulasi dengan metode estimasi Bayesian Markov Chain Monte Carlo (MCMC). Hasil yang diperoleh menunjukkan bahwa perhitungan analitik estimasi parameter lebih akurat dibandingkan perhitungan dengan bantuan perangkat lunak, apabila dipandang dari segi kesesuaian teori serta proses integrasinya
Model Regresi Semiparametrik Spline Hasil Produksi Padi di Kabupaten Lombok Timur Bidayani Bidayani; Mustika Hadijati; Nurul Fitriyani
Eigen Mathematics Journal Vol. 2 No. 1 Juni 2019
Publisher : University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (399.758 KB) | DOI: 10.29303/emj.v1i1.31

Abstract

Beras merupakan suatu sumber bahan makanan pokok penting yang harus tetap terjaga ketersediannya sepanjang tahun. Namun untuk tahun-tahun terakhir ini Indonesia yang dikenal dengan kekayaan alamnya, menjadi salah satu negara pengimpor beras. Hal ini dikarenakan konsumsi beras di indonesia terus meningkat setiap tahunnya, sedangkan produksi beras yang dihasilkan kurang mencukupi konsumsi masyarakat Indonesia. Penelitian ini dilakukan dengan tujuan untuk menentukan model regresi semiparametrik spline pada analisis faktor-faktor yang mempengaruhi hasil produksi padi di Kabupaten Lombok Timur tahun 2014, serta mengetahui faktor-faktor apa saja yang mempengaruhi hasil produksi padi tersebut. Metode yang digunakan adalah regresi semiparametrik spline dengan pemilihan titik knot optimum menggunakan Generalized Cross Validation. Hasil yang diperoleh menunjukkan bahwa variabel yang secara signifikan mempengaruhi hasil produksi padi adalah ketinggian wilayah dari permukaan laut, dengan nilai koefisien determinasi sebesar 99,71% dan nilai Root Mean Square Error of Prediction sebesar 41,65.
Analisis Dependensi Faktor Makroekonomi terhadap Tingkat Harga Emas Dunia dengan Pendekatan Copula Sri Wati Agustini; Mustika Hadijati; Nurul Fitriyani
Eigen Mathematics Journal Vol. 2 No. 2 Desember 2019
Publisher : University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (406.972 KB) | DOI: 10.29303/emj.v1i2.37

Abstract

Gold is a precious metal that used many times as an alternative investment. Before investing, every investor requires relevant information to make profitable investment decisions. Relevant information can be obtained by looking at the dependency relationship between variables. In identifying the relationship between variables, a Copula approach could be used, since it is not tight against the assumption of normality, which is common in macroeconomic variables. Copula used were Archimedean Copula family, such as Clayton, Frank, and Gumbel.  The results of this study indicated that the Archimedean Copula of the Frank family is the best Copula models to explain the structure of dependencies between gold and each composite stock price index and exchange rate, with each parameter obtained were 2.286 and -2.2390, respectively, while Clayton Copula family was the best Copula models to explain the structure of dependencies between gold and oil, with parameter obtained was 3.4090.