p-Index From 2021 - 2026
7.612
P-Index
This Author published in this journals
All Journal Jurnal Informatika JURNAL SISTEM INFORMASI BISNIS TELKOMNIKA (Telecommunication Computing Electronics and Control) Jurnal Sarjana Teknik Informatika JUITA : Jurnal Informatika Jurnal Aplikasi Bisnis dan Manajemen (JABM) E-Journal Jurnal Teknologi dan Sistem Komputer JIEET (Journal of Information Engineering and Educational Technology) Indonesian Journal of Information System BAREKENG: Jurnal Ilmu Matematika dan Terapan JITK (Jurnal Ilmu Pengetahuan dan Komputer) JMM (Jurnal Masyarakat Mandiri) SELAPARANG: Jurnal Pengabdian Masyarakat Berkemajuan JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI ILKOM Jurnal Ilmiah MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Jurdimas (Jurnal Pengabdian Kepada Masyarakat) Royal KOMPUTA : Jurnal Ilmiah Komputer dan Informatika GERVASI: Jurnal Pengabdian kepada Masyarakat INSIST (International Series on Interdisciplinary Research) Jurnal Informatika Global Jurnal Teknologi Terpadu bit-Tech Jurnal Abdimas Mandiri Indonesian Journal of Electrical Engineering and Computer Science Reswara: Jurnal Pengabdian Kepada Masyarakat Teknosains : Jurnal Sains,Teknologi dan Informatika Journal of Computer Networks, Architecture and High Performance Computing Idealis : Indonesia Journal Information System Lumbung Inovasi: Jurnal Pengabdian Kepada Masyarakat Indonesian Community Journal Jurnal Teknologi Sistem Informasi Jurnal Ilmiah Teknik Informatika dan Komunikasi Jurnal INFOTEL SISFOTENIKA Jurnal Teknik Informatika dan Teknologi Informasi
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : SISFOTENIKA

Prediksi Kualitas Susu Menggunakan Metode K-Nearest Neighbors Suhandi, Nazori; Gustriansyah, Rendra; Destria, Abel; Amalia, Marshanda; Kris, Via
SISFOTENIKA Vol. 14 No. 2 (2024): SISFOTENIKA
Publisher : STMIK PONTIANAK

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30700/sisfotenika.v14i2.430

Abstract

Milk is a nutrient-rich source abundant in calcium and lactose, playing a crucial role in addressing nutritional deficiencies. Milk quality is determined by pH levels and pasteurization processes. This research aims to predict milk quality using the K-Nearest Neighbors (K-NN) Method. The analysis is conducted through a series of steps, including data preprocessing involving categorical data encoding, handling missing values, and data cleansing. Subsequently, the optimal K value is selected using the elbow method, with a value of K=3. The data is then divided into training and testing sets to avoid overfitting and validate model performance, and the testing results of using K-NN to predict milk quality are evaluated using three different data splitting schemes: 80-20, 70-30, and 60-40. By utilizing Confusion Matrix to calculate precision, recall, and accuracy, we can assess the proportion of correctly classified positive cases, accurately identified. The best accuracy result is obtained from scheme one at 0,94, with a recall of 0.8, and precision reaching 1. This research provides a significant contribution to understanding, predicting, and monitoring milk quality, encompassing a profound understanding of factors influencing milk quality and the development of advanced predictive models. Overall, this study strengthens the scientific foundation for the dairy industry comprehensively.