Claim Missing Document
Check
Articles

Found 39 Documents
Search

Penerapan Algoritma K-Medoids Pada Clustering Penerima Bantuan Pangan Non Tunai (BPNT) Tiara Ramayanti; Elin Haerani; Jasril Jasril; Lola Oktavia
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 7, No 3 (2023): Juli 2023
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v7i3.6475

Abstract

Bantuan Pangan Non Tunai (BPNT) is assistance distributed by the government to underprivileged communities to ease the financial burden that is increasingly burdening their lives. In a number of cases, it was found that the number of people who received BPNT was not properly targeted, so it was necessary to analyze the pattern of the characteristics of BPNT recipients so that the assistance was right on target. There are many criteria that must be considered to determine the people who are entitled to receive BPNT, so an appropriate algorithm is needed to determine the right cluster when analyzing characteristic patterns. This study applies the K-Medoids algorithm to classify BPNT data obtained from Firza Syahputra's research in 2020–2021, with a total of 732 attributes, so that the government can consider the factors that characterize beneficiaries. Perform tests using the Silhouette coefficient, which is useful for maximizing clustering results. The clustering result is three clusters, and the silhouette coefficient is 0.4439221599010089. The results of the analysis show that clustering performed using the K-Medoids algorithm can assume that clusters are grouped according to grouping: cluster 0 is eligible to receive BPNT, cluster 1 is considered, and cluster 2 is not eligible to receive BPNT.
Penerapan Seleksi Fitur Untuk Klasifikasi Penerima Bantuan Sosial Pangkalan Sesai Menggunakan Metode K-Nearest Neighbor Muhammad Fauzan; Siska Kurnia Gusti; Jasril Jasril; Pizaini Pizaini
Jurnal Sistem Komputer dan Informatika (JSON) Vol 5, No 1 (2023): September 2023
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v5i1.6654

Abstract

The inability to fulfill basic human needs is how poverty is defined. To address this issue, the indonesian goverment implements various social assistance programs, one of which is Kartu Indonesia Pintar (KIP), aimed at providing free education to children aged 7-18 who are economically disadvantaged. However, in the distribution of aid in the Pangkalan sesai sub-district, distributing officers often face challenges due to the high number of eligible recipients applying, complex data requierements, and limited time for the officers. Distributing this social assistance accurately is crusial. Therefore, this research aims to determine the accuracy value for the data of potential recipients of the Kartu Indonesia Pintar (KIP to enhance the data verification process’s outcomes. To tackle this issue, the research employs the K-Nearest Neighbor (K-NN) algoritm and also employs feature selection using Information Gain to reduce less influential attributes. The data used consists of 1998 records of KIP beneficiaries from the 2023 in excel format, with 33 attributes. After performing data cleaning an Information Gain-based feature selection, the dataset is reduced to 1675 records, with 5 selected attributes. The best classification result in this study is achieved with ratios of 7:3 and 8:2, and a value of k = 5, yielding the highest accuracy of 98,21%. The lowest accuracy is obtained using a ratio of 9:1 with the same k value when not using Information Gain, resulting in an accuracy of 89,82%.
Penerapan Algoritma C4.5 Mengklarifikasi Penerimaan Bantuan Sosial Menggunakan Feature Selection M Wandi Dwi Wirawan; Siska Kurnia Gusti; Jasril Jasril; Pizaini Pizaini
Jurnal Sistem Komputer dan Informatika (JSON) Vol 5, No 1 (2023): September 2023
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v5i1.6653

Abstract

The Indonesian government's efforts to overcome poverty in Indonesia are through the Smart Indonesia Card (KIP) program which is carried out by the government in the form of providing assistance to underprivileged families. The main aim of distributing KIP assistance is to help send underprivileged children to continue their education, the difficulties found in receiving KIP are due to the large number of residents registering, as well as the data having several conditions, the limited time available in providing KIP by sub-district parties, the completion base is relatively low, therefore the provision of assistance must be right on target. Therefore, the aim of this research is to look for the most influential attributes in receiving KIP assistance in order to improve the results of the data verification process. After carrying out Feature Selection using Information Gain, the most influential attributes can be obtained. The influences are Number of Art, Number of Rooms, Cooking Room, Refrigerator, Motorbike. Therefore, we need to know some of the attributes that most influence the selection of KIP assistance so that we can get accuracy values from decision tree modeling using the C4.5 algorithm or decision tree. Test This experiment can produce a decision tree in which the Number of Art attribute is the most influential attribute with the success rate of KIP acceptance. This evaluation uses a confusion matrix to obtain an accuracy value of 98.21%, precision of 98.21%, recall of 99.48%.
Penerapan Fuzzy C-Means Pada Klasterisasi Penerima Bantuan Pangan Non Tunai Sola Huddin; Elin Haerani; Jasril Jasril; Lola Oktavia
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 1 (2023): Agustus 2023
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i1.988

Abstract

One of the social assistance programs routinely provided by the government to Beneficiary Families (KPM) to overcome poverty problems in Indonesia at this time is Non-Cash Food Assistance (BPNT). The Pekanbaru City Social Service itself in distributing BPNT still experiences obstacles, such as the provision of assistance that is less targeted due to the absence of a system that is able to determine the recipient of aid appropriately. This research applies the Fuzzy C-Means Clustering method to analyze KPM data using MATLAB tools. This algorithm allows overlap between data groups and classifies KPM based on their characteristic patterns. This algorithm takes into account the membership level of each data in each group, thus providing more flexible results and not categorizing data rigidly. The results of the application of the FCM Clustering method in this study form two clusters, where the first cluster contains 331 data while in the second cluster there are 351 data. Testing the results of FCM clustering conducted using the Silhouette Coefficient method produces an average coefficient value of 0.426653079. Based on the value of the test results that have been carried out, the FCM algorithm is considered capable of forming clusters on BPNT data
Application of K-Means Algorithm on Clustering Recipients of Non-Cash Food Assistance (NCFA) Said Nanda Saputra; Elin Haerani; Jasril Jasril; Lola Oktavia; Fadhilah Syafria
CESS (Journal of Computer Engineering, System and Science) Vol 8, No 2 (2023): July 2023
Publisher : Universitas Negeri Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24114/cess.v8i2.48026

Abstract

Persoalan Kemiskinan pada berbagai daerah Indonesia menjadi fokus perhatian. Program BPNT (Bantuan Pangan Non Tunai) bermaksud memangkas biaya pangan dan membagikan gizi yang sepadan terhadap KPM (Keluarga Penerima Manfaat). Penelitian ini menerapkan algoritma K-Means untuk menganalisis pola karakteristik penerima BPNT di Pekanbaru. Data yang digunakan berasal dari penelitian sebelumnya oleh Firza Syahputra dan dari Dinas Sosial Kota Pekanbaru tahun 2020-2021 dengan 732 data dan 41 parameter. Penerapan K-Means dilakukan melalui Google Colab. Melalui data mining dan metode clustering, ditemukan dua klaster dengan 666 data dalam klaster 1 dan 16 data dalam klaster 2. Evaluasi menggunakan Silhouette Score menunjukkan hasil yang baik, dengan nilai 0.9169796594018274. Penelitian ini berpotensi membantu pemerintah dalam mengambil keputusan yang efektif selama penyebaran bantuan pangan non tunai kepada rakyat yang membutuhkan. Dengan demikian, algoritma K-Means Clustering dapat mengidentifikasi pola karakteristik penerima BPNT dan membedakan kelompok yang layak dan tidak layak menerima bantuan.Poverty issues in various parts of Indonesia are the focus of attention. The NCFA (Non-Cash Food Assistance) program's purpose are to lower food consumption and give Beneficiary Families (BF) a healthy diet. The k-means technique use in this study to assess the distinctive patterns of NCFA grantees in Pekanbaru. The data used comes from previous research by Firza Syahputra and from Social Affairs Office Pekanbaru in 2020-2021 with 732 data and 41 parameters. The application of k-means is done through Google Colab. Through data mining and clustering methods, two clusters were found with 666 data in cluster 1 and 16 data in cluster 2. Evaluation using Silhouette Score showed good results, with a value of 0.9169796594018274. This research has the potential to assist the government in making effective decisions in distributing non-cash food help people in need. For the result, the k-means Clustering technique is able to recognize the traits of NCFA recipients and identify groups that are and are not eligible for aid.
Klasifikasi Citra Daging Sapi dan Babi Menggunakan CNN Alexnet dan Augmentasi Data Ikhwanul Akhmad DLY; Jasril Jasril; Suwanto Sanjaya; Lestari Handayani; Febi Yanto
Journal of Information System Research (JOSH) Vol 4 No 4 (2023): Juli 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josh.v4i4.3702

Abstract

Konsumsi daging di Indonesia didominasi oleh sapi, kerbau, dan ayam. Namun, beberapa pedagang nakal mencampur daging sapi dengan daging babi sehingga sulit dibedakan oleh masyarakat awam. Beberapa penelitian telah menggunakan metode Convolutional Neural Network (CNN) untuk mengklasifikasikan citra, namun kekurangan data menjadi tantangan. Oleh karena itu, penelitian ini menerapkan teknik augmentasi data pada model CNN Alexnet untuk mengklasifikasikan daging sapi, babi, dan daging oplosan. Penelitian ini menggunakan dua rasio pembagian data yang berbeda, yaitu 90:10 dan 80:20, dengan total 600 data non-augmentasi dan 3000 data augmentasi yang dibagi menjadi tiga kelas. Beberapa hyperparameter diuji untuk mengoptimalkan kinerja model seperti optimizer Adaptive Moment Estimation (Adam), Stochastic Gradient Descent (SGD) dan Propagasi Root Mean Square (RMSprop) serta learning rate 0.1, 0.01, 0.001 dan 0.0001. Hasil menunjukkan bahwa penggunaan data citra augmentasi dengan optimizer Adam dan learning rate 0,001 memberikan accuracy tertinggi sebesar 85,00%. Sementara itu, penggunaan data citra non-augmentasi dengan skenario optimizer RMSprop dan learning rate 0, 0001 menghasilkan performa yang sedikit lebih rendah, yaitu mendapatkan accuracy 80.00%. Keduanya menggunakan perbandingan data 80:20. Teknik augmentasi data berhasil meningkatkan kinerja model deep learning dengan menciptakan data baru dari data yang ada.
Penerapan Algoritma Mean-Shift Pada Clustering Penerimaan Bantuan Pangan Non Tunai Rizuan Rizuan; Elin Haerani; Jasril Jasril; Lola Oktavia
Journal of Computer System and Informatics (JoSYC) Vol 4 No 4 (2023): August 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v4i4.3876

Abstract

Kemiskinan merupakan kondisi individu atau sekumpulan individu yang tidak memiliki akses ke sumber daya yang memadai untuk memenuhi kebutuhan dasar serta menjalani kehidupan yang baik. Tujuan bantuan pangan non tunai adalah untuk memberikan bantuan pangan kepada yang membutuhkannya melalui metode non tunai, seperti kartu debit atau kartu elektronik. Penelitian ini bertujuan menemukan pola karakteristik calon penerima Bantuan Pangan Non Tunai (BPNT) berdasarkan kriteria dari Dinas Sosial Kota Pekanbaru. Berdasarkan hasil pengujian menggunakan Silhouette Score didapatkan kluster terbaik adalah 2 kluster dengan bandwidth 285 dan Silhouette Score 0.95 klaster 1 memiliki 680 data, dan klaster 2 memiliki 2 data. Hasil claster 1 memiliki pola status penguasaan tempat tinggal berstatus bebas sewa dan kontrak/sewa, untuk jenis lantai terluas adalah batu merah/ sementara, jenis adalah dinding plasteran dan jenis air konsumsi dari leding meteran. Sedangkan hasil cluster 2 memiliki pola penguasaan tempat tinggal berstatus milik sendiri, untuk jenis lantai adalah keramik, jenis dinding adalah tembok dan konsumsi air dari sumur bor pompa.
Pengaruh Hyperparameter Convolutional Neural Network Arsitektur ResNet-50 Pada Klasifikasi Citra Daging Sapi dan Daging Babi Sarah Lasniari; Jasril Jasril; Suwanto Sanjaya; Febi Yanto; Muhammad Affandes
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 5, No 3 (2022): Juni 2022
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v5i3.4424

Abstract

Abstrak - Kasus kecurangan pedagang mencampur daging sapi dengan daging babi masih terjadi hingga saat ini. Membedakan daging sapi dan babi dapat dilakukan dengan mengamati secara langsung satu persatu, tetapi hal ini dapat dilakukan oleh para ahli, Tetapi secara kasat mata masih sulit membedakannya. Perilaku pedagang seperti ini sangat merugikan konsumen khususnya pemeluk agama Islam karena berkaitan dengan makanan yang halal atau haram. Pada penelitain ini menggunakan metode Deep Learning untuk klasifikasi citra dengan Convolutional Neural Network (CNN) arsitektur ResNet-50. Jumlah data sebanyak 457 citra yang terbagi menjadi 3 kelas, yaitu daging babi, daging oplosan dan daging sapi. Setiap kelas memiliki ukuran gambar yang sama yaitu 300 x 300 pixel. Pembagian data menggunakan split data dengan perbandingan 70% data uji : 30% data uji, 80% data latih : 20% data uji, dan 90% data latih : 10% data uji. Hasil dari pengujian model dengan Confusion Matrix menunjukkan performa klasifikasi tertinggi dengan 100% accuracy, 100% precision, dan 100% recall, pada data citra asli dengan penggunaan batch size 32, 0.001 learning rate, epoch 75 dan split data 90% : 10%.Kata kunci: Convolutional Neural Network, Daging Babi dan Sapi, Deep Learning, Klasifikasi Citra, ResNet  Abstract - Traders mixing beef and pork are still committing fraud today. Although professionals can discern between beef and pork by watching them one by one, it is still impossible to do so with the naked eye. This kind of behavior is very detrimental to consumers, especially Muslims because it is related to halal or haram food. This research uses Deep Learning method to classify images with Convolutional Neural Network (CNN) ResNet-50 architecture. The number of data is 457 images which are divided into 3 classes, namely pork, mixed meat and beef. Each class has the same image size, which is 300 x 300 pixels. data distribution using split data with a comparison of 70% training data: 30% test data, 80% training data: 20% test data, and 90% training data: 10% test data. The results of model testing using the Confusion Matrix show the highest classification performance with 100% accuracy, 100% precision, and 100% recall, on the original image data using batch size 32, 0.001 learning rate, epoch 75 and split data 90%: 10%..Kata kunci: Convolutional Neural Networ, Deep Learning, Image Classification, Pork and Beef, ResNet
Question Answering Al-Qur’an Menggunakan Generative Pre-Trained Transformer 3.5 Berbasis Chatbot Telegram Saputra, Elvino Dwi; Harahap, Nazruddin Safaat; Jasril, Jasril; Yusra, Yusra
Jutisi : Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Vol 13, No 1: April 2024
Publisher : STMIK Banjarbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35889/jutisi.v13i1.1879

Abstract

The Al-Qur’an is a holy book that regulates everything related to life in this world and the afterlife. Searching for and understanding certain information in the Qur’an took a long time. Because it contains 30 juz, 114 surahs, and 6326 verses. However, with technological development, the search and understanding process can be faster by utilizing Artificial Intelligence (AI). Because AI can do what humans do with a faster and more accurate process. Combining AI with a Question Answering System (QAS) using a chatbot solves this problem. The searching and understanding process could be done quickly and accurately in two directions. Generative Pre-trained Transformer (GPT) is used as a model to understand natural human language. This model is considered accurate and fast, with the time needed approximately 1 minute to get an answer with an accuracy of 78.85%, answer relevance of 98.3%, and hallucination of 22.5%.Keywords: Al-Qur’an; Artificial Intelligence; Chatbot; Question Answering System; Generative Pre-trained Transformer AbstrakAl-Qur’an merupakan kitab suci yang didalamnya mengatur segala hal terkait kehidupan di dunia dan akhirat. Dibutuhkan waktu yang begitu lama dalam proses pencarian dan pemahaman mengenai informasi tertentu dalam Al-Qur’an. Dikarenakan didalamya terkandung 30 juz, 114 surah, dan 6326 ayat. Namun dengan adanya perkembangan teknologi proses pencarian dan pemahaman bisa lebih cepat dengan memanfaatkan Artificial Intelligence (AI). Ini dikarenakan AI dapat melakukan pekerjaan layaknya manusia dengan proses yang lebih cepat dan akurat. Perpaduan antara AI dengan Question Answering System (QAS) menggunakan chatbot menjadi solusi dari masalah tersebut. Proses pencarian dan pemahaman dapat dilakukan dengan cepat dan akurat serta dapat dilakukan dengan dua arah. Generative Pre-trained Transformer (GPT) digunakan sebagai model dalam proses pemahaman bahasa manusia secara alami. Penggunaan model ini dinilai akurat dan cepat dengan waktu yang dibutuhkan lebih kurang 1 menit untuk mendapatkan jawaban dengan akurasi sebesar 78,85%, answer relevancy sebesar 98,3% dan hallucination sebesar 22,5%.Â