Claim Missing Document
Check
Articles

Implementasi Analisis Markov pada R Studio untuk Model Prediksi Perpindahan Pengguna Transportasi Online Yerymia Alfa Susetyo
Jurnal Teknologi Dan Sistem Informasi Bisnis Vol 5 No 3 (2023): July 2023
Publisher : Prodi Sistem Informasi Universitas Dharma Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47233/jteksis.v5i3.844

Abstract

The development of transportation in Indonesia has entered an era of collaboration with information technology. Online-based transportation has proven to facilitate the mobility of people's lives. The emergence of various online transportation providers in Indonesia requires these providers to have data-based programmed business planning. Predicting customer loyalty is one of the factors considered in business planning. This study aims to predict the switching behavior of online transportation users using Markov Analysis. The study uses data taken from 100 respondents in Jakarta. User switching patterns are analyzed based on the first, second, and third months of online transportation providers used by the respondents. Gojek and Grab are used as the online transportation providers examined in this study. The study results in a Steady State or equilibrium condition, showing that Gojek has a 66% user loyalty rate, while Grab has a 34% user loyalty rate.
PEMBANGUNAN AUTOMASI EMAIL BLAST PADA APLIKASI DOCUMENT SHARING MENGGUNAKAN GMAIL API DI PT XYZ Ivan Andika Surya; Yeremia Alfa Susetyo
JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Vol 8, No 3 (2023)
Publisher : STKIP PGRI Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29100/jipi.v8i3.4031

Abstract

Sistem pengelolaan surel yang efektif dibutuhkan untuk membantu proses bisnis perusahaan terutama di bidang ritel. Pengelolaan penyebaran surel secara manual memiliki berbagai kelemahan yang timbul dari keterbatasan manusia seperti lupa dalam pengiriman surel, keterlambatan penyampaian informasi, dan lain-lain. Hal-hal semacam itu dapat menghambat proses bisnis perusahaan. Penelitian ini bertujuan untuk membangun arsitektur perangkat lunak automasi email blast pada aplikasi Document Sharing menggunakan Gmail API dan beberapa layanan dari Google Cloud Platform. Lalu untuk memastikan perangkat lunak bekerja dengan baik dan sesuai dengan kebutuhan pengguna, perangkat lunak akan melalui tahap pengujian black box. Setelah dilakukan pengujian, perangkat lunak akan diluncurkan sebagai solusi dari permasalahan yang dihadapi perusahaan. Penelitian ini menghasilkan sebuah perangkat lunak automasi email blast berbasis web. Dengan adanya perangkat lunak tersebut, PT XYZ sudah tidak perlu melakukan pengiriman ulang surel secara manual. Sehingga proses bisnis dan penyebaran informasi yang terjadi di PT XYZ menjadi efisien, cepat, dan terstruktur.
ANALISIS PERBANDINGAN PERFORMA DATABASE DUCKDB DAN SQLITE PADA PENGOLAHAN BIG DATA Farid Arya Nugraha; Yerymia A. Susetyo
JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Vol 8, No 3 (2023)
Publisher : STKIP PGRI Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29100/jipi.v8i3.4032

Abstract

Data memiliki peran sangat penting pada zaman ini karena dengan data setiap perusahaan dapat mengambil keputusan dengan lebih baik. Namun data yang ada tentunya akan semakin besar dan kompleks seiring berjalannya waktu. Akibatnya adalah waktu pengolahan data menjadi lebih lambat dan dapat menghambat proses bisnis. Pemilihan database yang tepat sangat penting karena dapat mempengaruhi performa suatu aplikasi. Saat ini database memiliki banyak jenis diantaranya yaitu DuckDB dan SQLite di mana kedua database tersebut adalah database yang tepat untuk menangani big data. Untuk membandingkan dua database tersebut tahapan-tahapan metode yang penulis gunakan yaitu identifikasi kebutuhan perangkat, persiapan dataset, perancangan skema pengujian, implementasi dan pengujian, dan analisis hasil. Pada penelitian ini, query yang diuji antara lain insert, update, delete, select, sum, count, max, dan average. Data yang digunakan merupakan data sales dengan jumlah 6.362.620 data. Dari pengujian yang dilakukan SQLite unggul dalam mengeksekusi query insert, update semua kolom, delete, dan select. Sementara itu, DuckDB unggul dalam mengeksekusi query yang menggunakan fungsi agregat dan update dua buah kolom. Dengan hasil tersebut dapat ditarik kesimpulan bahwa SQLite cocok digunakan untuk melakukan proses transaksi. Sedangkan DuckDB cocok digunakan untuk melakukan proses analisis.
Model Clustering Zona Kesesuaian Lahan menggunakan Kombinasi Algoritma Fuzzy C-Means dan Partition Coefficient Index Yerymia Alfa Susetyo
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 7, No 3 (2023): Juli 2023
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v7i3.6097

Abstract

The agricultural sector is one of the vital supporters of national development. The planning of a good agricultural system needs to be supported by looking at the characteristics of each region. The diversity of agricultural areas in Indonesia needs to be simplified by classification according to their similar characteristics. This study aims to group the area of land suitability in an agricultural area. Clustering is obtained using the Fuzzy C-Means algorithm that is validated using the Partition Coefficient Index. Agriculture zone clusters are obtained from the identification of the characteristics of the slope, height, and rainfall of each region. It produced three clusters of land-compatibility zones with almost identical degree of membership. The Partition Coefficient Index algorithm is used to validate the resulting cluster. The results of these three clusters are valid, with PCI membership degrees already grouped according to each cluster. There are two points in the cluster 1, seven points in cluster 2, and eight points on cluster 3.The three clusters that have been generated can facilitate the identification of suitable agricultural land according to their respective characteristics.
Implementasi Python API dengan Framework Flask sebagai Cloud Run Service Untuk Proses Update di PT. XYZ Rizky Nandang Pratama; Yeremia Alfa Susetyo
Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) Vol 5, No 2 (2024): Edisi April
Publisher : LPPM STIKOM Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/kesatria.v5i2.376

Abstract

This study focuses on implementing an API using the Flask framework in the Python programming language, which is then deployed as a Cloud Run service to facilitate data updating processes in XYZ company. By utilizing Flask as a lightweight and user-friendly API development framework, we successfully integrated it into the Google Cloud Platform's (GCP) Cloud Run environment to leverage its scalability and high performance. Our testing indicates that the Cloud Run service provides benefits in terms of automatic scalability, easy infrastructure management, and high reliability in efficiently processing data updates. Thus, the findings of this research affirm that this approach offers an effective solution for enhancing data updating processes in XYZ company, leveraging the advantages of Flask technology and the Cloud Run service.
Analisis Perbandingan Optical Character Recognition Google Vision dengan Microsoft Computer Vision pada Pembacaan KTP-el Valentino, Jonathan; Susetyo, Yeremia Alfa
Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Vol 7 No 4 (2023): OCTOBER-DECEMBER 2023
Publisher : Lembaga Otonom Lembaga Informasi dan Riset Indonesia (KITA INFO dan RISET)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jtik.v7i4.1046

Abstract

In this era, the need of digital data is rapidly increasing. Electronic Residental Identity Card or KTP-el is the official identity card for resident of Indonesia. One fast way to extract information on an image is by using OCR/Optical Character Recognition. Competition between Google Vision API and Microsoft Computer Vision in providing OCR service encourage companies to choose the right provider. Method conducted in this research including literature review on both OCR service provider, identification and KTP-el sample image retrieval, data grouping, code implementation and accuracy testing, result analysis and discussion, and conclusion. The result of this research show that Microsoft Computer Vision have better accuracy in reading characters in KTP-el with an accuracy percentage of 0,81% to 15,8% difference to Google Vision. Google Vision has competitive accuracy, but suffers from deficiencies when reading KTP-el with blur and noise.
Analisis dan Penerapan Database Mongodb pada Aplikasi Manajemen Dokumen di PT. XYZ Yulius; Susetyo, Yeremia Alfa
Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Vol 7 No 4 (2023): OCTOBER-DECEMBER 2023
Publisher : Lembaga Otonom Lembaga Informasi dan Riset Indonesia (KITA INFO dan RISET)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jtik.v7i4.1047

Abstract

The development of NoSQL databases has become increasingly popular due to the need for diverse data storage systems that can accommodate varying attributes. MongoDB is one such NoSQL database that uses a document data model with JSON data types, allowing for storing data with diverse attributes. This study aims to analyze and implement MongoDB in a document management application at PT. XYZ uses the waterfall method. The discussion results include the application system architecture, the advantages of MongoDB such as its flexible schema and lack of downtime during schema changes, and its drawbacks such as limited web hosting support. The study also covers the implementation of MongoDB CRUD operations in the document management application and system testing using BlackBox Testing. Based on the research, it can be concluded that using MongoDB in the document management application at PT. XYZ provides an effective and efficient solution for managing documents.
Perancangan Sistem Informasi Data Supplier Barang menggunakan Framework Ionic (Studi Kasus: CV. Delapan Sepuluh Cemerlang) Adisattrio, Yefta; Susetyo, Yeremia Alfa
Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Vol 7 No 4 (2023): OCTOBER-DECEMBER 2023
Publisher : Lembaga Otonom Lembaga Informasi dan Riset Indonesia (KITA INFO dan RISET)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jtik.v7i4.1068

Abstract

Delapan sepuluh Cemerlang is a company engaged in the provision of goods, accuracy and speed are services that are needed to satisfy clients from CV. Delapan sepuluh Cemerlang, so an accurate information system is needed to get a price comparison of each item ordered by the client. This study aims to build an information system that can be easily accessed via a smartphone, the system was developed using the SDLC prototype method which was built using the Ionic framework specifically to be able to build systems with the help of HTML, CSS and AngularJs combined with firebase to make it easier and faster to change data on the system. System testing will use the functional suitability instrument with the Guttman scale as a measure.
Klasifikasi Kardus Barang di PT XYZ Menggunakan Convolutional Neural Network dengan Pendekatan Fine Grained Image Classification Firmandicky, Alief Yuwastika; Susetyo, Yeremia Alfa
Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Vol 8 No 4 (2024): OCTOBER-DECEMBER 2024
Publisher : Lembaga Otonom Lembaga Informasi dan Riset Indonesia (KITA INFO dan RISET)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jtik.v8i4.2337

Abstract

PT XYZ requires a system to automatically validate items in storage with the system. Cardboard boxes containing items exhibit high visual similarity within a specific sub-category. Several studies have demonstrated the use of Convolutional Neural Network (CNN) as a method for image classification with a Fine Grained Image Classification (FGIC) approach for classifying data with high similarity, resulting in good accuracy, and this will be applied in this research. The ResNet architecture is used with and without ImageNet weight initialization, combined with the RMCSAM architecture, resulting in eight training configurations. Based on testing results using 172 images across 14 classes, the ResNet + RMCSAM configuration with ImageNet weight initialization and the 20 times augmentation dataset achieves the highest accuracy compared to other configurations, with an accuracy of 99.42% and a loss of 0.0004. This configuration is utilized for cardboard classification in the PT XYZ warehouse.
SISTEM PENDUKUNG KEPUTUSAN PENDIRIAN FASILITAS PELAYANAN KESEHATAN DI KABUPATEN SEMARANG DENGAN METODE SIMPLE ADDITIVE WEIGHTING Dinata, Dimas Ridho; Susetyo, Yeremia Alfa
IT Explore: Jurnal Penerapan Teknologi Informasi dan Komunikasi Vol 3 No 1 (2024): IT-Explore Februari 2024
Publisher : Fakultas Teknologi Informasi, Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24246/itexplore.v3i1.2024.pp34-48

Abstract

Fasilitas Pelayanan Kesehatan mempunyai peran penting dalam kehidupan. Peran ini mencakup keadaan kesejahteraan yang melibatkan tidak hanya ketiadaan penyakit atau kecacatan, tetapi juga keseimbangan yang baik dalam berbagai aspek kehidupan. Tujuan dari penelitian ini adalah mengembangkan Sistem Pendukung Keputusan Pendirian Fasilitas Pelayanan Kesehatan di Kabupaten Semarang Menggunakan Metode Simple Additive Weighting (SAW). Penelitian ini menggunakan metode penelitian kuantitatif dan menganalisis data yang terkait fasilitas pelayanan kesehatan di wilayah Kabupaten Semarang dengan menggunakan metode Simple Additive Weighting (SAW). Sample dalam penelitian ini adalah seluruh kecamatan di wilayah Kabupaten Semarang tahun 2020-2021. Teknik pengumpulan data menggunakan teknik pencarian data literatur. Hasil akhir dari penelitian ini menunjukan bahwa Sistem Pendukung Keputusan dapat merekomendasikan satu dari sembilan belas wilayah pendirian fasilitas pelayanan kesehatan yaitu Kecamatan Bancak, yang mendapatkan rangking 1 (satu) berdasarkan pengolahan data dengan metode SAW.