Claim Missing Document
Check
Articles

IMPLEMENTASI METODE TEMPLATE MATCHING TERHADAP PENGENALAN CITRA PLAT NOMOR KENDARAAN BERMOTOR Ahmad Shofi Khairian; Irwan Budiman; Muhammad Itqan Mazdadi; Andi Farmadi; Dwi Kartini
Journal of Data Science and Software Engineering Vol 3 No 02 (2022)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (851.121 KB)

Abstract

Abstract The motorized vehicle number (TNKB) sign or commonly referred to as the police license plate is a plate made of aluminum that shows the sign of a motorized vehicle in Indonesia that has been registered with the Samsat Office. The motor vehicle number sign in the form of an aluminum plate consists of 2 (two) lines, the first line showing the area code (letters), police number (numbers), and the final code/series. This study uses 10 license plates of motorized vehicles as test data taken for each character and 3 data sets of letters AZ and numbers 0-9 number plates of motorized vehicles for each character as training data. The purpose of this study was to determine the level of accuracy of the method Template Matching on image recognition of motor vehicle numbers. The results of the implementation of the method Template Matching on the image recognition of motorized vehicle license plates is to produce an accuracy rate of 95.56%.
IMPLEMENTASI ALGORITMA GENETIKA UNTUK OPTIMASI NEURAL NETWORK PADA STUDI KASUS PERMAINAN TRON Muhammad Darmadi; Irwan Budiman; Muliadi; Andi Farmadi; Triando Hamonangan Saragih
Journal of Data Science and Software Engineering Vol 3 No 02 (2022)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1491.944 KB)

Abstract

Abstract Tron is played in an arena composed of grids and often both players are placed at different starting points, each player basically playing the game by aiming straight, turning left or turning right until one or both of them hit a wall or laser object. This study aims to examine how good genetic algorithms are in optimizing neural networks for artificial intelligence. As well as to find out what the winning percentage is for each researched artificial intelligence. The results obtained are that N5 is faster in obtaining optimal results, which only requires 9 generations but has the lowest percentage. So it can be concluded that the faster finding optimal results does not guarantee that artificial intelligence will be better..
PREDIKSI DATA PENARIKAN UANG TUNAI DI MESIN ATM MENGGUNAKAN METODE SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (SARIMA) Fitrinadi; Irwan Budiman; Andi Farmadi; Dodon Turianto Nugrahadi; Muhammad Itqan Mazdadi
Journal of Data Science and Software Engineering Vol 3 No 02 (2022)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1712.756 KB)

Abstract

Abstract Data mining is a series of processes to explore the added value of knowledge that has been unknown from a data set. Many algorithms can be used in solving a problem related to prediction or forecasting a new data value for the future based on pre-existing data. Sarima model is a model in time series analysis. The performance of the Seasonal Autoregressive Integrated Moving Average (SARIMA) method produces a suitable or good model used to predict cash withdrawal data at ATM machines. The data used in the study is a dataset of ATM transactions originating from Finhacks. The result of error using MAPE (Mean Absolute Percenttage Error) on the predicted result of cash withdrawal data at atm machines is K1 16.75%, K2 18.09%, K3 7.85%, K4 5.67%, and K5 11.80%. So it can be concluded that the data matches using the SARIMA model that has been selected because the MAPE value is smaller than 20%.
OPTIMASI ALGORITMA K-NEAREST NEIGHBOR DENGAN SELEKSI FITUR MENGGUNAKAN XGBOOST Muflih Ihza Rifatama; Mohammad Reza Faisal; Rudy Herteno; Irwan Budiman; Muhammad Itqan Mazdadi
Jurnal Informatika dan Rekayasa Elektronik Vol. 6 No. 1 (2023): JIRE April 2023
Publisher : LPPM STMIK Lombok

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36595/jire.v6i1.723

Abstract

Kankergmerupakan istilah umum untuk sekelompokgbesar penyakit yang dapatgmenyerang bagian tubuhgmanagpun. Salah satu kanker yang berbahaya adalah Kankerspayudara. Pencegahanskanker payudarasdapatsdilakukansdengan salah satu cara yaitu skrining atau diagnosa dini. Pendiagnosaan dapat menggunakan Machine learning dengan beberapa algoritma contohnya K-Nearest Neighbor. Algortima klasifikasi K-Nearest Neighbor (K-NN) merupakan algortima yang cukup terkenal dan sering digunakan, tetapi terdapat kelemahan pada algoritma KNN yaitu algoritma ini sangat berpengaruh dengan adanya data yang noise atau tidak relevan jika skala fitur tidak konsisten dengan kepentingannya. Salah satu cara mengatasinya adalah dengan cara menyeleksi fitur. Seleksi fitur yang digunakan yaitu menggunakan Extreme Gradient Boosting (XGBoost) berdasarkan kepentingan fitur yang didapatkan. Hasilnya menunjukkan bahwa KNN dengan seleksi fitur XGBoost menggungguli model KNN tanpa seleksi fitur, untuk nilai KNN dengan seleksi fitur XGBoost mendapatkan akurasi sebesar 0,977 sedangkan KNN tanpa seleksi fitur mendapatkan akurasi sebesar 0,974.
Prediction of Post-Operative Survival Expectancy in Thoracic Lung Cancer Surgery Using Extreme Learning Machine and SMOTE Ajwa Helisa; Triando Hamonangan Saragih; Irwan Budiman; Fatma Indriani; Dwi Kartini
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol 9, No 2 (2023): June
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i2.25973

Abstract

Lung cancer is the most common cause of cancer death globally. Thoracic surgery is a common treatment for patients with lung cancer. However, there are many risks and postoperative complications leading to death. In this study, we will predict life expectancy for lung cancer patients one year after thoracic surgery The data used is secondary data for lung cancer patients in 2007-2011. There are 470 data consisting of 70 death class data and 400 survival class data for one year after surgery. The algorithm used is Extreme learning machine (ELM) for classification, which tends to be fast in the learning process and has good generalization performance. Synthetic Minority Over-sampling (SMOTE) is used to solve the problem of imbalanced data. The proposed solution combines the benefits of using SMOTE for imbalanced data along with ELM. The results show ELM and SMOTE outperform other algorithms such as Naïve Bayes, Decision stump, J48, and Random Forest. The best results on ELM were obtained at 50 neurons with 89.1% accuracy, F-Measure 0.86, and ROC 0.794. In the combination of ELM and SMOTE, the accuracy is 85.22%, F-measure 0.864, and ROC 0.855 on neuron 45 using a data division proportion of 90:10. The test results show that the proposed method can significantly improve the performance of the ELM algorithm in overcoming class imbalance. The contribution of this study is to build a machine learning model with good performance so that it can be a support system for medical informatics experts and doctors in early detection to predict the life expectancy of lung cancer patients.
IMPLEMENTATION OF INFORMATION GAIN AND PARTICLE SWARM OPTIMIZATION UPON COVID-19 HANDLING SENTIMENT ANALYSIS BY USING K-NEAREST NEIGHBOR Riana Riana; Muhammad I Mazdadi; Irwan Budiman; Muliadi Muliadi; Rudy Herteno
JIKO (Jurnal Informatika dan Komputer) Vol 6, No 1 (2023)
Publisher : JIKO (Jurnal Informatika dan Komputer)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/jiko.v6i1.5260

Abstract

In early 2020, a new virus from Wuhan, China, identified as the coronavirus or COVID-19, shocked the entire world. (Coronavirus Disease 2019). The government has made various attempts to combat this outbreak, despite the fact that the government's involvement in combating Covid-19 has many benefits and disadvantages. One of the most commonly debated subjects on Twitter is the Indonesian government's response to the Covid-19 virus. This research compares the k-nearest neighbor classification technique, Information Gain feature selection with the K-Nearest Neighbor classification algorithm, and Information Gain feature selection and Particle Swarm Optimization optimization with the K-Nearest Neighbor classification algorithm. Comparisons are performed to determine which method is more accurate. Because it is frequently used for text and data categorization, the K-Nearest Neighbor algorithm was selected. The K-Nearest Neighbor algorithm has flaws, including the ability to be fooled by irrelevant characteristics and being less than ideal in finding the value of k. The selection of the Information Gain feature could indeed solve this issue by decreasing Terms that are less important and to optimize the K-Nearest Neighbor categorization, an optimization method with the Particle Swarm Optimization algorithm is employed to maximize the K-Nearest Neighbor classification. According to the results of this research, the K-Nearest Neighbor categorization with Information Gain feature selection and Particle Swarm Optimization optimization is better than the K-Nearest Neighbor model without selecting features and without optimization and is better than the K-Nearest Neighbor model with Information Gain selecting features, notably 87,33% with a value of K 5.
Perbandingan Ekstraksi Fitur dengan Pembobotan Supervised dan Unsupervised pada Algoritma Random Forest untuk Pemantauan Laporan Penderita COVID-19 di Twitter Sulastri Norindah Sari; Mohammad Reza Faisal; Dwi Kartini; Irwan Budiman; Triando Hamonangan Saragih; Muliadi Muliadi
Jurnal Komputasi Vol 11, No 1 (2023): Jurnal Komputasi
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/komputasi.v11i1.6650

Abstract

Dimasa sekarang masyarakat sudah berani melaporkan dirinya terpapar COVID-19 melalui unggahan di media sosial seperti Twitter. Hal ini dapat dimanfaatkan oleh masyarakat sekitar atau lembaga kesehatan untuk memberikan bantuan terhadap pelapor. Pemantauan laporan penderita COVID-19 di Twitter dapat dilakukan secara otomatis dengan algoritma machine learning untuk klasifikasi teks. Pada kasus klasifikasi teks, algoritma machine learning menerima input berupa data terstruktur hasil ekstraksi fitur dengan teknik unigram dengan pembobotan. Metode pembobotan kata unsupervised merupakan pembobotan yang tidak memperhatikan letak term di kelas positif atau negatif. Kemudian metode pembobotan ini dikembangkan menjadi pembobotan supervised, karena dalam proses pembobotannya metode ini membobotkan term dengan memperhatikan letak term di kelas positif atau negatif. Pada riset ini dilakukan perbandingan kedua jenis pembobotan pada klasifikasi data tweet gejala covid dengan algoritma machine learning yaitu Random Forest. Dari hasil penelitian didapat hasil kinerja klasifikasi dengan pembobotan supervised Delta TF-IDF terbukti lebih bagus dengan akurasi sebesar 88,5% sedangkan dengan pembobotan unsupervised TF-IDF diperoleh hasil akurasi 87,9%
Classification of Natural Disaster Reports from Social Media using K-Means SMOTE and Multinomial Naïve Bayes Nor Indrani; Mohammad Reza Faisal; Irwan Budiman; Dwi Kartini; Friska Abadi; Septyan Eka Prastya; Mera Kartika Delimayanti
Journal of Computer Science and Informatics Engineering (J-Cosine) Vol 7 No 1 (2023): June 2023
Publisher : Informatics Engineering Dept., Faculty of Engineering, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jcosine.v7i1.503

Abstract

Disasters can occur anytime and anywhere. Floods and forest fires are two types of disasters that occur in Indonesia. South Kalimantan Province is an area that frequently experiences floods and forest fires. The dataset used for previous research's flood and forest fire disaster data is unbalanced. Unbalanced data conditions can complicate the classification method in carrying out the classification process. The sampling method for the data level approach that can be used to solve imbalance problems is oversampling, one of the derivatives of oversampling, namely SMOTE. The K-Means SMOTE method is a modification of SMOTE. One Naïve Bayes model often used in text classification is Multinomial Naïve Bayes. Multinomial Naïve Bayes has a good performance in classifying text. The research results on flood disaster data using K-Means SMOTE with Multinomial Naïve Bayes yielded an f1 score of 66.04%, and forest fire disaster data using K-Means SMOTE with Multinomial Naïve Bayes produced an f1 score of 66.31%.
Gender Classification Based on Electrocardiogram Signals Using Long Short Term Memory and Bidirectional Long Short Term Memory Kevin Yudhaprawira Halim; Dodon Turianto Nugrahadi; Mohammad Reza Faisal; Rudy Herteno; Irwan Budiman
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol 9, No 3 (2023): September
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i3.26354

Abstract

Gender classification by computer is essential for applications in many domains, such as human-computer interaction or biometric system applications. Generally, gender classification by computer can be done by using a face photo, fingerprint, or voice. However, researchers have demonstrated the potential of the electrocardiogram (ECG) as a biometric recognition and gender classification. In facilitating the process of gender classification based on ECG signals, a method is needed, namely Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (Bi-LSTM). Researchers use these two methods because of the ability of these two methods to deal with sequential problems such as ECG signals. The inputs used in both methods generally use one-dimensional data with a generally large number of signal features. The dataset used in this study has a total of 10,000 features. This research was conducted on changing the input shape to determine its effect on classification performance in the LSTM and Bi-LSTM methods. Each method will be tested with input with 11 different shapes. The best accuracy results obtained are 79.03% with an input shape size of 100×100 in the LSTM method. Moreover, the best accuracy in the Bi-LSTM method with input shapes of 250×40 is 74.19%. The main contribution of this study is to share the impact of various input shape sizes to enhance the performance of gender classification based on ECG signals using LSTM and Bi-LSTM methods. Additionally, this study contributes for selecting an appropriate method between LSTM and Bi-LSTM on ECG signals for gender classification.
Newspaper Ad Submission and Payment Website Measurement Analysis Using McCall and PIECES Muhammad Nazar Gunawan; Friska Abadi; Dodon Turianto Nugrahadi; Irwan Budiman; Setyo Wahyu Saputro
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 11 No. 2 (2025): June
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v11i2.30355

Abstract

The transition to digital platforms in the media industry requires robust systems to ensure efficiency and user satisfaction. As with Digital Iklan Radar Banjarmasin, the Newspaper ad submission and payment website, there is a need for evaluation to comprehensively ensure software feasibility and quality. This research evaluates the quality of the Newspaper ad submission and payment website using the McCall and PIECES frameworks, comparing their strengths and identifying areas for improvement. This research contributes to determining the most suitable evaluation methods for such types of websites while offering actionable insights for developers to improve the quality of systems and services. Data collection involved online surveys with 106 respondents and 38 Likert-scale questions mapped to McCall and PIECES frameworks. Statistical tests, including validity, reliability, and an independent t-test, were applied to compare results. McCall's evaluation rated the system at 68% (Good), with low scores in Usability (38.5%), Reliability (36.77%), and Efficiency (38.15%), indicating areas needing significant improvement. PIECES evaluation scored 80.4% (Good), with Performance (81%) and Service (82.39%) rated Very Good, though Control and Security (78.55%) required enhancement. Statistical analysis with independent t-test confirmed significant differences between the two methods, indicating that both methods measure aspects of software quality from different perspectives, thus providing complementary insights for evaluation. The study highlights the complementary nature of McCall and PIECES in software quality evaluation. Recommendations include improving usability, system stability, and security for better user experiences. Future research should involve broader demographic samples and different system types to validate findings and enhance generalizability.
Co-Authors A.A. Ketut Agung Cahyawan W Abdul Gafur Achmad Zainudin Nur Ahmad Faris Asy'arie Ahmad Faris Asy’arie Ahmad Rusadi Arrahimi Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Shofi Khairian Aji Triwerdaya Ajwa Helisa Akhmad Yusuf Andi Farmadi Andi Farmadi Andi Farmadi Andi Farmandi Antar Sofyan Aris Pratama Artesya Nanda Akhlakulkarimah Dendy Fadhel Adhipratama Dendy Dita Amara Dodon Turianto Nugrahadi Dwi Kartini Dwi Kartini Dwi Kartini Dwi Kartini Dwi Kartini, Dwi Faisal Murtadho Fatma Indriani Fatma Indriani Fitrinadi Friska Abadi Halimah Halimah Halimah Ichwan Dwi Nugraha Kevin Yudhaprawira Halim Lutfi Salisa Setiawati M Kevin Warendra Mera Kartika Delimayanti Muflih Ihza Rifatama Muhammad Adhitya Pratama Muhammad Darmadi Muhammad Haekal Muhammad Halim Muhammad Haris Qamaruzzaman Muhammad I Mazdadi Muhammad Iqbal Muhammad Irfan Saputra Muhammad Itqan Masdadi Muhammad Itqan Mazdadi Muhammad Latief Saputra Muhammad Mada Muhammad Nazar Gunawan Muhammad Reza Faisal, Muhammad Reza Muhammad Ridha Maulidi Muhammad Rizky Adriansyah Muhammad Rusli Muliadi Muliadi Muliadi - Muliadi Aziz Muliadi Muliadi Muliadi Muliadi muliadi muliadi Muliadi Muliadi Mutiara Ayu Banjarsari Nahdhatuzzahra Nahdhatuzzahra Nor Indrani Nursyifa Azizah Oni Soesanto Patrick Ringkuangan Radityo Adi Nugroho Rahman Hadi Rahman Rahmat Hidayat Rahmat Ramadhani Retma Ramadina Riana Riana Riza Susanto Banner Rizki Amelia Rudy Herteno Rudy Herteno Salsabila Anjani Sam'ani Sam'ani Saragih, Triando Hamonangan Septiadi Marwan Annahar Septyan Eka Prastya Setyo Wahyu Saputro Sofyan, Antar Sulastri Norindah Sari Sutami Sutan Takdir Alam Toni Prahasto Tri Mulyani Wahyu Caesarendra Wahyudi Wahyudi Yuli Christyono