Claim Missing Document
Check
Articles

IMPLEMENTASI ALGORITMA GENETIKA DENGAN TEKNIK SELEKSI TOURNAMENT UNTUK PENYUSUNAN JADWAL KULIAH Faisal Murtadho; Andi Farmadi; Dodon Turianto Nugrahadi; Irwan Budiman; Dwi Kartini
Journal of Data Science and Software Engineering Vol 2 No 01 (2021)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (249.883 KB)

Abstract

Genetic Algorithms can help human work, one of which is compiling course schedules. Preparation of course schedules, if done manually, will take a long time because you have to make a schedule where there are no schedule conflicts between one course and another. Therefore, this study will implement a Genetic Algorithm for the preparation of course schedules, so that it will speed up the preparation of course schedules compared to manual scheduling. In this study, the Genetic Algorithm with Tournament Selection was carried out with the input of control parameters, namely Population Size = 10, Crossover Rate (CR) = 0.75, and Mutation Rate (MR) = 0.01. In this study, the Genetic Algorithm has succeeded in obtaining the desired solution, namely scheduling courses where there are no schedule conflicts between one course and another. This search process took 88 generations to find the best solution.
GRU, AdaGrad, RMSprop, Adam Implementasi Metode Gate Recurrent Unit (GRU) dan Metode Optimasi Adam Untuk Prediksi Harga Saham Muhammad Mada; Andi Farmadi; Irwan Budiman; Mohammad Reza Faisal; Muhammad Itqan Mazdadi
Journal of Data Science and Software Engineering Vol 2 No 01 (2021)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (468.639 KB)

Abstract

In terms of their potential, stocks are one of the most profitable investment options today. If done well and right, stocks can be a very profitable investment. However, volatile stock prices make it necessary to predict stock prices to make a profit. Gated Recurrent Unit (GRU) is a method for predicting time series data such as stock prices. The Optimization method is needed to get accurate prediction results. The weight renewal optimization method such as Adam is implemented to obtain the best weight in the Gated Recurrent Unit (GRU) and to find out the best loss function value generated by the Adam optimization method. The GRU-Adam implementation is carried out on two stock data, namely ICBP and YULE. The results of this research are that the ICBP data yields the respective loss function values, namely train loss 0.0016 and validation loss 0.0007. Whereas the YULE data resulted in a train loss value of 0.0051 and a validation loss of 0.0031. The MAPE generated in the ICBP stock data is 0.97%. While the YULE data is 3.00%.
EFEK NORMALISASI DATA GENRE MUSIC TERHADAP KINERJA KLASIFIKASI DENGAN RANDOM FOREST Wahyudi Wahyudi; M Reza Faisal; Dwi Kartini; Irwan Budiman; Andi Farmadi
Journal of Data Science and Software Engineering Vol 2 No 01 (2021)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (295.248 KB)

Abstract

This research is about the classification of the music genre using the Random Forest method. This test uses a dataset from GitHub or GITZAN about the music genre with 10 labels, 26 features and 1000 total data. This research is divided into two stages, namely by classifying all data without being normalized, and by using all normalized data. . In this research, Min-Max is used for data normalization method, and for accuracy calculation using Confusion Matrix method. The resulting accuracy when using all data with data that is not normalized produces an accuracy of 66.3%, while the resulting accuracy performance when using all data with normalized data results in an accuracy of 65.1%.
Klasifikasi Tanda Tangan Menggunakan Metode Template Matching Ahmad Faris Asy'arie; Andi Farmadi; Irwan Budiman; Dwi Kartini; Ahmad Rusadi Arrahimi
Journal of Data Science and Software Engineering Vol 2 No 02 (2021)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (238.279 KB)

Abstract

Template Matching is one of the methods used for digital image processing, usually used to recognize the shape or pattern of an image. The shape or pattern that is often used to be recognized is in the form of character images, letters, numbers, or fingerprints. In the research conducted, signature pattern recognition was made using Template Matching for signature classification. Signature is chosen in research conducted with the aim of knowing whether the signature can be recognized using the Template Matching in addition to character images of letters, numbers, or fingerprints. Template Matching works by matching each pixel in the image matrix that has been digitally processed with the reference image (template) and because Template Matching is an applied method of convolutional technique, Template Matching combines two numbers to produce a third number series, so that the correlation coefficient (r) of the Template Matching will be obtained between -1 and +1. The results of the trials carried out show that the signature pattern recognition with Template Matching can recognize the signature image tested with a recognition accuracy rate of 96% with as many as 100 signature images.
PERFORMANCE COMPARISON OF ADAPTIVE NEURO FUZZY INFERENCE SYSTEM AND SUPPORT VECTOR MACHINE ALGORITHM IN BALANCED AND UNBALANCED MULTICLASS DATA CLASSIFICATION Muhammad Irfan Saputra; Irwan Budiman; Dwi Kartini; Dodon Turianto Nugrahadi; Mohammad Reza Faisal
Journal of Data Science and Software Engineering Vol 2 No 03 (2021)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (278.287 KB)

Abstract

Data is a record collection of facts. At first the data in the real world were largely unbalanced. Although, the existence of data on fewer categories is much more important to know data on more categories. However, there are some balanced data. This balanced data is the possibility of a ratio of 1:1 in which, the data in the dataset is the same. In this study, using the ANFIS algorithm and SVM to see affected performance on balanced and imbalanced data with multiclass. Data is taken from the UCI Machine Learning. From the research conducted, it is known that the SVM method on the Wine dataset has an accuracy of 96.6% and the ANFIS method on the Iris dataset has an accuracy of 94.7%.
Optimasi Bobot Weighted Moving Average Dengan Particle Swarm Optimization Dalam Peramalan Tingkat Produksi Karet Dendy Fadhel Adhipratama Dendy; Irwan Budiman; Fatma Indriani; Radityo Adi Nugroho; Rudy Herteno
Journal of Data Science and Software Engineering Vol 2 No 03 (2021)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (336.447 KB)

Abstract

Rubber is a mainstay commodity in the country, in 2014 Indonesia ranked second as the largest natural rubber producing country in the world. However, rubber production in Indonesia experiences uncertain ups and downs so it is necessary to predict it in order to benefit small farmers and the state. Weighted Moving Average ( WMA) is a method for predicting time series data. However, the parameters on the WMA need to be optimized in order to get optimal weight results on the WMA and get accurate results. Algorithm Particle Swarm Optimization implemented to determine the weight value of the method Weighted Moving Average more optimal. PSO-WMA and WMA were carried out on three weights, namely from weighting 3 4 and 5 on rubber production data. So that the results of this study are WMA with 3 weights get 81% accuracy, 4 weight 80.5% and 5 weight 80.3%. And for PSO-WMA, the accuracy at weighting 3 is 81.4%, weighting 4 is 80.9% and for weighting 5 it is 81.6%. The test results of this study have the effect of the weight value on WMA in increasing the accuracy results.
OPTIMASI NILAI N PADA SINGLE MOVING AVERAGE (SMA) DENGAN PARTICLE SWARM OPTIMIZATION (PSO) STUDI KASUS SAHAM BRI Rahman Hadi Rahman; Irwan Budiman; Friska Abadi; Andi Farmandi; Muliadi
Journal of Data Science and Software Engineering Vol 2 No 03 (2021)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (456.928 KB)

Abstract

The stock market is a promising business area. The potential to obtain high returns in a fairly short time is one of the main attractions of this business. Prediction of stock prices has become a very interesting and challenging thing for researchers and academics, recently it was found that stock prices can be predicted with a certain degree of accuracy. Single Moving Average (SMA) is one method for predicting time series data. However, the N value in SMA needs to be optimized in order to get the N value with optimal results at the SMA and get accurate results. The Particle Swarm Optimization Algorithm is implemented to find out the best N value in the Single Moving Average methodwhich is more optimal. SMA+PSO and SMA are calculated using the initial N values ​​of 3,5,7,9,11. So the results of this study are SMA with an accuracy of 97.98464% and for SMA+PSO with an accuracy of 98.15442% . The test results from this study are the influence of PSO on SMA in increasing accuracy in determining the best N value.
SOLUSI KLASIFIKASI DATA TIDAK SEIMBANG DENGAN PENDEKATAN BERBASIS COMBINATION OF OVERSAMPLING AND UNDERSAMPLING Riza Susanto Banner; Irwan Budiman; Dodon Turianto Nugrahadi; M. Reza Faisal; Friska Abadi
Journal of Data Science and Software Engineering Vol 3 No 01 (2022)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (345.141 KB)

Abstract

This study applies the Combination of Oversampling and Undersampling method to deal with class imbalances. Researchers do Preprocessing to normalize the attributes used for prediction, then divide the training data and testing data. Researchers resampled unbalanced data using Oversampling, Undersampling and a combination of Oversampling and Undersampling. The results of the classification with the experimental data class balancing approach, the best classification performance is the combination of Oversampling and Undersampling classified by the k-Nearest Neighbor (KNN) method with an accuracy of 0.8672; sensitivity of 0.9000; specificity of 0.3750; and AUC of 0.6651042. Classification with Oversampling has performance results, namely accuracy of 0.875; sensitivity of 0.9250; specificity of 0.1250; and AUC of 0.6078125, while Undersampling classification has classification performance, namely accuracy of 0.3438; sensitivity of 0.33333; specificity of 0.50000; and AUC of 0.3645833.
Text Mining Untuk Mengklasifikasi Judul Berita Online Studi Kasus Radar Banjarmasin Menggunakan Metode TF-IDF dan K-NN Salsabila Anjani; Andi Farmadi; Dwi Kartini; Irwan Budiman; Mohammad Reza Faisal
Journal of Data Science and Software Engineering Vol 3 No 01 (2022)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (299.003 KB)

Abstract

ABSTRACT The news media that used to be commonly used were newspapers. However, with the development of the times, the news media is now entering the digital era. Many online news media spread on the internet. The sophistication of the internet makes it easier for readers to choose which news they want to read. Unlike newspapers, online news media have categories where readers can choose. In general, the categorization of a news in online media is determined by the editor. Given the number of news published in a day, of course, makes the editor's job difficult. A category in the news is usually not appropriate because usually the headline is made as attractive as possible to attract the interest of the reader. So there are times when the news title does not match the category that has been entered by the editor. The use of the K-Nearest Neighbor (K-NN) method can be used in determining the categorization of a news. By using a case study of the online media Radar Banjarmasin, a research was conducted to find out how well the Canberra and Euclidean classification methods were using news headline data for categorization. The results obtained in this study are the better classification method is Euclidean and with an accuracy value of 65.00%. Improvements that should be made for further research is to use other methods for comparison.
COMPARATIVE ANALYSIS OF FUZZY TIME SERIES METHOD WITH FUZZY TIME SERIES MARKOV CHAIN ON RAINFALL FORECAST IN SOUTH KALIMANTAN M Kevin Warendra; Irwan Budiman; Rudy Herteno; Dodon Turianto Nugrahadi; Friska Abadi
Journal of Data Science and Software Engineering Vol 3 No 01 (2022)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1219.79 KB)

Abstract

Abstract Time series data (TS) is a type of data that is collected according to the order of time within a certain time span. Time Series data analysis is one of the statistical procedures applied to predict the probability structure of future conditions for decision making. FTS (FTS) is a data forecasting method that uses fuzzy principles as its basis. Forecasting systems with FTS capture patterns from past data and then use them to project future data. FTS Markov Chain is a new concept that was first proposed by Tsaur, in his research to analyze the accuracy of the prediction of the Taiwan currency exchange rate with the US dollar. In his research, Tsaur combines the FTS method with Markov Chain, The merger aims to obtain the greatest probability using a transition probability matrix. The results obtained from this research are tests with the best number of presentation values ​​from FTS Markov Chain with FTS, resulting in different accuracy values ​​depending on the two methods. The best accuracy performance is obtained by the Markov Chain FTS method with an error value of 1.6% and an accuracy value of 98.4% and for FTS with an error value of 7.4% and an accuracy value of 92.6%. produce different accuracy values ​​depending on the two methods. The best accuracy performance is obtained by the Markov Chain FTS method with an error value of 1.6% and an accuracy value of 98.4% and for FTS with an error value of 7.4% and an accuracy value of 92.6%. produce different accuracy values ​​depending on the two methods. The best accuracy performance is obtained by the Markov Chain FTS method with an error value of 1.6% and an accuracy value of 98.4% and for FTS with an error value of 7.4% and an accuracy value of 92.6%.
Co-Authors A.A. Ketut Agung Cahyawan W Abdul Gafur Achmad Zainudin Nur Ahmad Faris Asy'arie Ahmad Faris Asy’arie Ahmad Rusadi Arrahimi Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Shofi Khairian Aji Triwerdaya Ajwa Helisa Akhmad Yusuf Andi Farmadi Andi Farmadi Andi Farmadi Andi Farmandi Antar Sofyan Aris Pratama Artesya Nanda Akhlakulkarimah Dendy Fadhel Adhipratama Dendy Dita Amara Dodon Turianto Nugrahadi Dwi Kartini Dwi Kartini Dwi Kartini Dwi Kartini Dwi Kartini, Dwi Faisal Murtadho Fatma Indriani Fatma Indriani Fitrinadi Friska Abadi Halimah Halimah Halimah Ichwan Dwi Nugraha Kevin Yudhaprawira Halim Lutfi Salisa Setiawati M Kevin Warendra Mera Kartika Delimayanti Muflih Ihza Rifatama Muhammad Adhitya Pratama Muhammad Darmadi Muhammad Haekal Muhammad Halim Muhammad Haris Qamaruzzaman Muhammad I Mazdadi Muhammad Iqbal Muhammad Irfan Saputra Muhammad Itqan Masdadi Muhammad Itqan Mazdadi Muhammad Latief Saputra Muhammad Mada Muhammad Nazar Gunawan Muhammad Reza Faisal, Muhammad Reza Muhammad Ridha Maulidi Muhammad Rizky Adriansyah Muhammad Rusli Muliadi Muliadi Muliadi - Muliadi Aziz Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi muliadi muliadi Mutiara Ayu Banjarsari Nahdhatuzzahra Nahdhatuzzahra Nor Indrani Nursyifa Azizah Oni Soesanto Patrick Ringkuangan Radityo Adi Nugroho Rahman Hadi Rahman Rahmat Hidayat Rahmat Ramadhani Retma Ramadina Riana Riana Riza Susanto Banner Rizki Amelia Rudy Herteno Rudy Herteno Salsabila Anjani Sam'ani Sam'ani Saragih, Triando Hamonangan Septiadi Marwan Annahar Septyan Eka Prastya Setyo Wahyu Saputro Sofyan, Antar Sulastri Norindah Sari Sutami Sutan Takdir Alam Toni Prahasto Tri Mulyani Wahyu Caesarendra Wahyudi Wahyudi Yuli Christyono