Claim Missing Document
Check
Articles

Penerapan Data Mining Clustering Algoritma K-Means Untuk Menganalisa Pola Kejadian Tindak Kejahatan (Studi Kasus Polrestabes Semarang) Kharisma, Ema Titania; Jananto, Arief
Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) Vol 5, No 4 (2024): Edisi Oktober
Publisher : LPPM STIKOM Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/kesatria.v5i4.480

Abstract

Crime is a complex social problem that affects the security of the community, especially in the city of Semarang. Therefore, in an effort to deal with the increasing crime, the use of information technology and data analysis becomes very relevant. This research aims to implement data mining algorithm K-Means Clustering in analyzing crime patterns in Semarang City. This research method involves the use of historical crime data from January to December 2022 with a total data of 305 incidents in Semarang City. The K-Means Clustering algorithm in data mining was chosen because of its ability to group data based on similar characteristics effectively. The data was analyzed using RapidMiner software, which facilitated the clustering of crime patterns into seven clusters cluster 1 with 60, cluster 2 with 31, cluster 3 with 36, cluster 4 with 35, cluster 5 with 51, cluster 6 with 55, and cluster 7 with 37. These findings provide a strong basis for the police to design more targeted and efficient crime handling strategies. The implementation of the K-Means Clustering algorithm in this study proved effective in identifying crime patterns and providing useful insights for security policy decision-making. This research also opens up opportunities for the development of more sophisticated information systems in city security management in the future
Perancangan Sistem Informasi Wisata Di Desa Kuto Harjo dengan Metode Agile Berbasis Web Anjani, Nabila Antania Putri; Jananto, Arief
Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Vol 10, No 1 (2025): Edisi Februari
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/jurasik.v10i1.864

Abstract

Kuto harjo Village has considerable tourism potential but has not reached the optimal level in managing tourism information so that it can be accessed by tourists and the community. For this reason, an information system must be built that can facilitate access to information about destinations, facilities and tourism activities in the village. This study aims to design and develop a tourism information system in the web-based village of Kuto Harjo using Agile methodology. The Agile methodology was chosen because of its ability to develop repeatable and flexible systems that adapt to changing user needs. This information system will be equipped with features such as tourist destination information, event calendar. The results of this system development are expected to increase tourism information access and support the promotion of tourist destinations in Kuto Harjo Village. Additionally, the implementation of the Agile method in developing this system allows for faster improvements and updates based on user input, so that the system can continue to grow and meet the needs of tourists.
Sistem Informasi Monitoring Perkembangan Prestasi Akademik dan Wanprestasi Siswa di MA Nurus Sunnah Tembalang Kota Semarang Berbasis Web Nabila, Alicia Ayu; Jananto, Arief
Jurnal Ilmu Multidisiplin Vol. 4 No. 2 (2025): Jurnal Ilmu Multidisplin (Juni–Juli 2025)
Publisher : Green Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.38035/jim.v4i2.923

Abstract

Kemajuan teknologi informasi memberikan peluang besar untuk meningkatkan efisiensi pengelolaan data di berbagai sektor, termasuk pendidikan. MA Nurus Sunnah Tembalang menghadapi tantangan dalam memantau perkembangan akademik dan wanprestasi siswa secara manual, yang berpotensi menyebabkan duplikasi atau kehilangan data. Penelitian ini bertujuan merancang dan mengembangkan sistem informasi berbasis web yang mampu memantau perkembangan prestasi akademik dan mencatat wanprestasi siswa secara lebih terstruktur dan real-time. Penelitian ini menggunakan metode pengembangan prototyping yang melibatkan pengumpulan kebutuhan, perancangan, pengembangan, serta pengujian menggunakan blackbox testing. Teknologi yang digunakan mencakup framework CodeIgniter, bahasa pemrograman PHP, dan database MySQL. Pengujian dilakukan terhadap tiga aktor utama: admin, walikelas, dan walimurid. Hasil penelitian menunjukkan bahwa sistem yang dikembangkan mampu memfasilitasi admin dalam pengelolaan data akademik, nilai, dan pelanggaran siswa. Walikelas dapat dengan mudah mencatat dan memantau perkembangan akademik serta wanprestasi siswa, sementara orang tua dapat memantau kemajuan akademik anak mereka dari jarak jauh secara online. Sistem ini memberikan solusi efisien, meminimalkan risiko kehilangan data, dan meningkatkan keterlibatan orang tua dalam pendidikan siswa.
Rancang Bangun Sistem Informasi Prediksi Penyakit Jantung Berbasis Algoritma Naive Bayes Wijoyo, Agung Suko; Jananto, Arief
Jurnal Teknik Informatika UNIKA Santo Thomas Vol 8 No. 2 : Tahun 2023
Publisher : LPPM UNIKA Santo Thomas

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Heart disease causes death in the world / year. High mortality from heart disease can be prevented and risk factors reduced if people have information about symptoms of heart disease. The number of factors collected to determine whether a person has cardiovascular disease or does not require a large enough data processing system is the heart of the data mining application with the Naive Bayes Classifier (NBC) method. Based on testing of the distribution of training data 80%, 85% and 90% the best accuracy was obtained using the method, namely at 90% training with an accuracy of 84%. The more training data used, the better the accuracy of the resulting NBC method.
Sistem Informasi Pengelolaan Update RME RSUP Dr. Kariadi Berbasis Web Hadinata, Nova Oktaviani; Jananto, Arief
Jurnal Teknik Informatika UNIKA Santo Thomas Vol 9 No. 1 : Tahun 2024
Publisher : LPPM UNIKA Santo Thomas

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Electronic Medical Records (RME) at Dr. Kariadi Central Hospital have been used since 2019. As technology develops and the use of RME applications increases, it has resulted in complaints and suggestions from users, to update the RME application to make it better in the future. But currently there is no information system to accommodate these problems. From these problems, a study was conducted to create an information system with the aim that users can document and manage the RME update process through the information system provided. This research uses the waterfall system development method, with the analysis system in the form of interviews and literature studies. As for the system design or modeling language using UML, and the programming language using PHP and MySql as storage / database. From the research conducted, an information system was produced that can document any complaints or suggestions from users, as well as monitoring for any related follow-up related to the RME application update.
Implementasi Algoritma C4.5 Untuk Klasifikasi Data Tracer Study Alumni Di Politeknik Negeri Semarang Dalila, Nisa Aulia; Jananto, Arief
Jurnal Teknik Informatika UNIKA Santo Thomas Vol 9 No. 2 : Tahun 2024
Publisher : LPPM UNIKA Santo Thomas

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini memfokuskan pada analisis klasifikasi data instansi tempat bekerja alumni Politeknik Negeri Semarang menggunakan algoritma C4.5. Sumber data utama adalah data tracer study alumni yang diunduh dari sistem informasi tracer study Politeknik Negeri Semarang mulai tahun kelulusan 2018 sampai dengan 2023. Pemodelan dengan algoritma C4.5 untuk menghasilkan pohon keputusan. Data sample sebanyak 100 record digunakan untuk menghitung nilai entropy dan gain dari masing-masing atribut, di mana atribut program studi memiliki nilai gain tertinggi sebesar 0,8951 dan menjadi akar pertama dari pohon keputusan. Uji coba lebih lanjut dilakukan dengan 2000 record data preprocessing menggunakan berbagai proporsi data training dan testing. Nilai akurasi tertinggi sebesar 73,3% didapatkan dari prosentase 70% data training dan 30% data testing yang menandakan model ini berhasil menangkap pola data dengan akurasi yang cukup memadai. Dari penelitian ini diharapkan memberikan wawasan tentang faktor-faktor yang mempengaruhi jenis instansi tempat alumni bekerja dan menunjukkan efektivitas algoritma C4.5 dalam klasifikasi data tracer study alumni.
Rancang Bangun Sistem Informasi Prediksi Penyakit Jantung Berbasis Algoritma Naive Bayes Wijoyo, Agung Suko; Jananto, Arief
Jurnal Teknik Informatika UNIKA Santo Thomas Vol 8 No. 2 : Tahun 2023
Publisher : LPPM UNIKA Santo Thomas

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Heart disease causes death in the world / year. High mortality from heart disease can be prevented and risk factors reduced if people have information about symptoms of heart disease. The number of factors collected to determine whether a person has cardiovascular disease or does not require a large enough data processing system is the heart of the data mining application with the Naive Bayes Classifier (NBC) method. Based on testing of the distribution of training data 80%, 85% and 90% the best accuracy was obtained using the method, namely at 90% training with an accuracy of 84%. The more training data used, the better the accuracy of the resulting NBC method.
Sistem Informasi Pengelolaan Update RME RSUP Dr. Kariadi Berbasis Web Hadinata, Nova Oktaviani; Jananto, Arief
Jurnal Teknik Informatika UNIKA Santo Thomas Vol 9 No. 1 : Tahun 2024
Publisher : LPPM UNIKA Santo Thomas

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Electronic Medical Records (RME) at Dr. Kariadi Central Hospital have been used since 2019. As technology develops and the use of RME applications increases, it has resulted in complaints and suggestions from users, to update the RME application to make it better in the future. But currently there is no information system to accommodate these problems. From these problems, a study was conducted to create an information system with the aim that users can document and manage the RME update process through the information system provided. This research uses the waterfall system development method, with the analysis system in the form of interviews and literature studies. As for the system design or modeling language using UML, and the programming language using PHP and MySql as storage / database. From the research conducted, an information system was produced that can document any complaints or suggestions from users, as well as monitoring for any related follow-up related to the RME application update.
Implementasi Algoritma C4.5 Untuk Klasifikasi Data Tracer Study Alumni Di Politeknik Negeri Semarang Dalila, Nisa Aulia; Jananto, Arief
Jurnal Teknik Informatika UNIKA Santo Thomas Vol 9 No. 2 : Tahun 2024
Publisher : LPPM UNIKA Santo Thomas

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini memfokuskan pada analisis klasifikasi data instansi tempat bekerja alumni Politeknik Negeri Semarang menggunakan algoritma C4.5. Sumber data utama adalah data tracer study alumni yang diunduh dari sistem informasi tracer study Politeknik Negeri Semarang mulai tahun kelulusan 2018 sampai dengan 2023. Pemodelan dengan algoritma C4.5 untuk menghasilkan pohon keputusan. Data sample sebanyak 100 record digunakan untuk menghitung nilai entropy dan gain dari masing-masing atribut, di mana atribut program studi memiliki nilai gain tertinggi sebesar 0,8951 dan menjadi akar pertama dari pohon keputusan. Uji coba lebih lanjut dilakukan dengan 2000 record data preprocessing menggunakan berbagai proporsi data training dan testing. Nilai akurasi tertinggi sebesar 73,3% didapatkan dari prosentase 70% data training dan 30% data testing yang menandakan model ini berhasil menangkap pola data dengan akurasi yang cukup memadai. Dari penelitian ini diharapkan memberikan wawasan tentang faktor-faktor yang mempengaruhi jenis instansi tempat alumni bekerja dan menunjukkan efektivitas algoritma C4.5 dalam klasifikasi data tracer study alumni.
INDONESIA Pola Asosiasi Untuk Rekomendasi Penataan Display Barang Menggunakan Algoritma Apriori dan FP-Growth (Study Kasus Gamefantasia Ada Swalayan Pati) MURDIANTO, BEKRI; Arief Jananto
Elkom: Jurnal Elektronika dan Komputer Vol. 16 No. 1 (2023): Juli : Jurnal Elektronika dan Komputer
Publisher : STEKOM PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/elkom.v16i1.999

Abstract

This data mining association processes 1224 Gamefantasia ticket redemption transaction data. The goal is to find a pattern of association between goods as a recommendation for structuring the display of goods at the cashier counter and increasing ticket exchange transactions. Modeling uses a comparison of two algorithms, namely the Apriori algorithm and FP-Growth. The data analysis method with the CRISMP-DM method is then processed by RStudio software. The results of the study with the same parameters support 0.02 and confidence 0.1 FP-Growth algorithm formed 53 rules, the strength of the association rule 6.2%, the accuracy was1245%. Whereas the Apriori algorithm forms only 12 rules, the strength of the association rules is 2.1% and the accuracy is 7.8%. Thus, it can be concluded that the use of the FP-Growth algorithm has better results than the Apriori algorithm because it has the highest accuracy in finding transaction patterns.