Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Buana Informatika

Analisis Sentimen Review Hotel Menggunakan Metode Deep Learning BERT Vidya Chandradev; I Made Agus Dwi Suarjaya; I Putu Agung Bayupati
Jurnal Buana Informatika Vol. 14 No. 02 (2023): Jurnal Buana Informatika, Volume 14, Nomor 2, Oktober 2023
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v14i02.7244

Abstract

Pandemi COVID-19 telah menyebabkan penurunan kunjungan pariwisata dan okupansi hotel. Penting bagi pengusaha hotel untuk memantau gaya hidup pengunjung guna menjaga kelangsungan bisnis. Salah satu cara untuk melakukannya adalah dengan memahami sentimen pengunjung hotel melalui analisis review agar mendapatkan pemahaman yang lebih baik dalam pengambilan keputusan terkait layanan dan aspek bisnis di sektor perhotelan. Penelitian ini menerapkan model deep learning natural language processing BERT untuk menganalisis sentimen positif dan negatif dari review pengunjung hotel di Indonesia. Model BERT yang digunakan telah menjalani proses pretrained dan diterapkan metode fine-tuning untuk menghasilkan analisis sentimen yang akurat. Hasil evaluasi menunjukkan bahwa model fine-tuning SmallBERT yang dilatih menggunakan dataset 515k review hotel selama 5 epoch memberikan performa yang baik. Model SmallBERT mencapai akurasi sebesar 91,40%, presisi 90,51%, recall 90,51%, dan skor f1 90,51% saat dievaluasi dengan dataset yang diberi label secara manual. Visualisasi hasil perbandingan sentimen yang didominasi oleh sentimen positif, dilakukan menggunakan Tableau
Analisis Sentimen Masyarakat terhadap Tayangan Televisi Nasional menggunakan Metode Deep Learning Bouchra, Ferhati; Suarjaya, I Made Agus Dwi; Rusjayanthi, Ni Kadek Dwi
Jurnal Buana Informatika Vol. 15 No. 2 (2024): Jurnal Buana Informatika, Volume 15, Nomor 02, Oktober 2024
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Indonesia’s television industry faces fierce competition, particularly in chasing ratings and ad revenue. This has ultimately led to declining broadcast quality on some national TV stations. This research aims to understand perceptions towards content quality by focusing on public opinion through sentiment analysis of social media (Twitter) using Bi-LSTM and Word2Vec methods. The research involved data collection, preprocessing, vectorization, data splitting, model training and testing, evaluation to find the best model, sentiment data classification, and finally, sentiment data analysis. Using a dataset of 515,492 sentiment points, the model achieved an accuracy of 96.4%, precision of 72.1%, recall of 72.0%, and f1-score of 72.8%. Analysis of Twitter user sentiment leans towards neutral and positive perceptions. The results of the sentiment analysis of Twitter users tend to be neutral and positive. The results of the public satisfaction trend show a change in the pattern of public satisfaction with the quality of television station content.
Analisis Sentimen Masyarakat terhadap Tayangan Televisi Nasional menggunakan Metode Deep Learning Bouchra, Ferhati; Suarjaya, I Made Agus Dwi; Rusjayanthi, Ni Kadek Dwi
Jurnal Buana Informatika Vol. 15 No. 2 (2024): Jurnal Buana Informatika, Volume 15, Nomor 02, Oktober 2024
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Indonesia’s television industry faces fierce competition, particularly in chasing ratings and ad revenue. This has ultimately led to declining broadcast quality on some national TV stations. This research aims to understand perceptions towards content quality by focusing on public opinion through sentiment analysis of social media (Twitter) using Bi-LSTM and Word2Vec methods. The research involved data collection, preprocessing, vectorization, data splitting, model training and testing, evaluation to find the best model, sentiment data classification, and finally, sentiment data analysis. Using a dataset of 515,492 sentiment points, the model achieved an accuracy of 96.4%, precision of 72.1%, recall of 72.0%, and f1-score of 72.8%. Analysis of Twitter user sentiment leans towards neutral and positive perceptions. The results of the sentiment analysis of Twitter users tend to be neutral and positive. The results of the public satisfaction trend show a change in the pattern of public satisfaction with the quality of television station content.
Co-Authors A.A. Ketut Agung Cahyawan W Aditama, I Putu Dede Raditya Adyatma, Putu Nanda Arya Agus Kerta Nugraha, I Wayan Anak Agung Ketut Agung Cahyawan Wiranatha Anak Agung Ketut Agung Cahyawan Wiranatha Apriana, Krisna Astuti, Ni Nyoman Indri Wika Ayu Krisnasari Ni Komang Ayu Wirdiani Ayu Wirdiani Bakkara, Kevin Christopher Bhagaskara, I Made Bagita Bouchra, Ferhati Cahyawan Wiranatha, Anak Agung Ketut Agung Candra, I Putu Wijaya Adi Danito, Philip Datar, Fandy Kusumaraditya Dewa Gede Kesuma Yoga Dextiro, Kadek Deksy Dharmawan, I Putu Yogi Prasetya Diatmika, Nyoman Gede Rayka Sedana Dwi Putra Githa Dwi Rusjayanthi, Dwi Efraim William Solang Eva Martina Sitorus G M Arya Sasmita Gede Widya Dharma Geovaldo, I Putu Hendra Gusti Agung Ayu Putri Gusti Agung Mayun Kukuh Jaluwana I Gusti Ngurah Bagus Picessa Kresna Mandala I Ketut Adi Purnawan I ketut Gede Darma Putra I Made Adhiarta Wikantyasa I Made Sukarsa I Made Sunia Raharja I Made Sunia Raharja, I Made Sunia I Nyoman Piarsa I Putu Agung Bayupati I Putu Agus Eka Pratama I Putu Arya Dharmaadi I Putu Wira Cahaya Pratama Yudha Ida Bagus Gde Dwipermana Sidhi Ida Bagus Kade Taruna Ida Bagus Nyoman Yoga Ligia Prapta Johan Tamin Kadek Suar Wibawa Ketut Mediana Ayu Candrayani Komang Arta Wibawa Krisnadinatha, I Gede Arya Kristina Kristina Luh Kade Devi Dwiyani Made Andika Verdiana Mahadiputra, Putu Gede Krisna Mahaputra, Putu Andre Mahayana, I Putu Gede Panji Badra Nalista, Ni Made Naila Narayana, I Putu Kevin Ari Ngeo Goa, Mario Valentino Ngurah Indra Purnayasa Ni Luh Ketut Inggitarahayu Anggasemara Ni Made Ika Marini Mandenni Ni Putu Ayu Widiari Ni Putu Viona Viandari Novenrodumetasa, Nathania nugraha, gemara adiyasa parahita Nugraha, Made Adhi Satrya Pande Nengah Purnawan Permana, Kadek Arya Putra Prabhaswara, Ilham Yoga Pratama , I Putu Agus Eka Pratama, I Putu Yoga pramesia Purwanthi, Luh Putu Ary Putu Adhika Dharmesta Putu Ratih Wulandari Putu Wira Buana Putu Yudha Yarcana Rahaditya Kusuma, Nyoman Tri Reyhan Todo Noer Yamin Ridho Hisbi Sulaiman Rusjayanthi, Ni Kadek Dwi Sadhaka, Anak Agung Istri Prabhaisvari Salsabila, Archels Ramadhany Saputra, Putu Alta Sari, Ni Kadek Ratna Sasmita, Gusti Made Arya Satriya, Rizki Dwi Savitri, Putu Rheya Ananda Setiawati, Putu Ayulia Shevira, Sheila Solang, Efraim William Susila, A.A Ngurah Hary Trisna , I Nyoman Prayana Trisna, I Nyoman Prayana Vidya Chandradev Wayan Oger Vihikan Wayan Oger Vihikan, Wayan Oger Whurapsari, Gusti Ayu Wahyu Wiartha, I Gusti Made Diva Widia Widhiasih, Ni Putu Nirmala Dewi Widiantari, Ni Putu Triska Wiranatha, A.A. Ketut Agung Cahyawan Wiranatha, Anak Agung Ketut Agung Cahyawan Wiranatha, Anak Agung Ketut Cahyawan Wiratama, Bayu Adhya Yanisa Putri, Komang Sri Zebedeus Cheyso