Claim Missing Document
Check
Articles

Uji Daya Antibakteri Gel Hand Sanitizer Minyak Atsiri Seledri (Apium graveolens ) Patricia, Amelinda Diana; Jumaeri, Jumaeri; Mahatmanti, F. Widhi
Indonesian Journal of Chemical Science Vol 8 No 1 (2019)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ijcs.v8i1.27191

Abstract

Telah dilakukan penelitian tentang uji aktivitas antibakteri gel hand sanitizer minyak atsiri daun seledri. Tujuan penelitian ini untuk mengetahui karakteristik senyawa yang terdapat dalam minyak atsiri daun seledri, serta aktivitas antibakterinya. Sampel yang digunakan adalah daun seledri,kemudian dilakukan destilasi uap air. Hasil minyak atsiri yang diperoleh dimurnikan menggunakan Na2SO4 untuk memisahkan air dengan minyak sehingga diperoleh rendemen 0,45% pada sampel daun seledri. Senyawa yang terkandung dalam minyak atsiri seledri diidentifikasi menggunakan GCMS, senyawa terbanyak adalah limonene dengan presentase 53,06% . Uji antibakteri dilakukan terhadap minyak atsiri murni dan gel hand sanitizer minyak atsiri. Daya antibakteri gel hand sanitizer minyak atsiri seledri yang memiliki daya hambat terbesar adalah gel hand sanitizer minyak atsiri daun seledri dengan konsentrasi 15% meiliki daya hambat 14 mm yang bersifat aktif , kemudian pada konsentrasi 10% sebesar 11 mm, dan pada konsentrasi 5% sebesar 8mm pada bakteri E.coli.
Preparasi Arang Aktif Trembesi Magnetit untuk Adsorpsi Senyawa Tannin dalam Limbah Cair Istiana, shofa; Jumaeri, Jumaeri; Prasetya, Agung Tri
Indonesian Journal of Chemical Science Vol 9 No 1 (2020)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ijcs.v9i1.28228

Abstract

Abstrak Tanaman trembesi merupakan tanaman cepat tumbuh yang digunakan sebagai tanaman hias dan peneduh yang mampu dijadikan menjadi arang. Modifikasi penelitian ini yaitu penmbahan senyawa magnetit pada arang aktif trembesi sehingga mempermudah untuk pemisahan dengan larutan senyawa tannin setelah proses adsorpsi dilakukan. Tujuan penelitian ini adalah mempelajari pengaruh waktu kontak, konsentrasi awal dan pH adsorspi senyawa tannin dalam larutan oleh arang aktif trembesi magnetit. Selain itu, penelitian ini juga mempelajari kinetika dan isoterm adsorpsinya. Pembuatan arang aktif trembesi magnetit dilakukan secara kopresipitasi dengan menambahkan NaOH 5 M dan arang aktif trembesi ke dalam larutan Fe3O4 yang terdiri dari FeCl3.6H2O dan FeSO4.7H2O. Preparasi Adsorben arang aktif trembesi magnetit dikarakterisasi dengan menggunakan XRD, FT-IR dan BET. Optimasi waktu kontak diperoleh pada waktu 50 menit, konsentrasi optimum 6,95 mg/L dan pada pH optimum 6 sebanyak 20,3412 mg/g. Model kinetika adsorpsi senyawa tannin dalam larutan oleh arang aktif trembesi mengikuti model kinetika orde dua semu (Ho) dengan harga koefisien relasinya (R2) 0,9989, k2 0,0330 g mg-1 menit, dan qe 0,0754 mg g-1. Model isoterm pada penelitian ini mengikuti model Freundlich dengan harga (R2) 0,8095, KF sebesar 1,8724 L mg-1 dan nF sebesar 1,955. Komposit arang aktif trembesi magnetit merupakan material yang baik untuk mengadsorpsi senyawa tannin karena dapat menyerap senyawa tannin dalam larutan dengan presentase penyerapan sebesar 81,56%. Pada limbah industri rokok, adsorben arang aktif trembesi magnetit mampu mengadsorpsi senyawa tannin dengan presentase penyerapan sebesar 56,47%. Abstract Trembesi plants are fast-growing plants that are used as ornamental plants and shade that can be used as charcoal. The modification of this study is the use of magnetite compounds on trembesi activated charcoal, making it easier for separation with a solution of tannin compounds after the adsorption process has been carried out. The purpose of this study was to study the effect of contact time, initial concentration and pH of adsorption of tannin compounds in the solution by activated charcoal magnetite. In addition, this study also studied the adsorption kinetics and isotherms. Making activated magnetite trembesi charcoal is done by coprecipitation by adding 5 M NaOH and activated charcoal trembesi into Fe3O4 solution consisting of FeCl3.6H2O and FeSO4.7H2O. Adsorbent preparation of magnetite activated charcoal is characterized by using XRD, FT-IR and BET. Optimization of contact time was obtained at 50 minutes, optimum concentration of 6.95 mg/L and at optimum pH 6 of 20.3412 mg/g. The kinetic model of adsorption of tannin compounds in solutions by trembesi activated charcoal follows pseudo second order kinetics (Ho) with the price of the correlation coefficient (R2) 0.9989, k2 0.0330 g mg-1 minute, and qe 0.0754 mg g-1. The isotherm model in this study follows the Freundlich model with price (R2) 0.8095, KF of 1.8724 L mg-1 and nF of 1.955. Trembesi magnetite activated charcoal composite is a good material for adsorbing tannin compounds because it can absorb tannin compounds in solutions with an absorption percentage of 81.56%. In cigarette industry waste, the magnetite trembesi activated charcoal adsorbent is able to adsorb tannin compounds with absorption percentage of 56.47%.
Penggunaan Zeolit A Termodifikasi HDTMA sebagai Slow Release Urea Fertilizer Haditya, Ervan Bagus; Jumaeri, Jumaeri; Sulistyaningsih, Triastuti
Indonesian Journal of Chemical Science Vol 9 No 1 (2020)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ijcs.v9i1.28675

Abstract

Abstrak Penggunaan zeolit A-HDTMA sebagai agen pupuk lepas lambat terhadap ketersediaan nitrogen tanah telah dipelajari. Penelitian diawali dengan sintesis zeolit A menggunakan bahan kaolin dengan metode hidrotermal. Zeolit A hasil sintesis dimodifikasi dengan surfaktan HDTMA dengan konsentrasi 2x KTK. Analisis nitrogen dengan menggunakan metode Kjeldahl. Karakterisasi zeolit A dan zeolit A termodifikasi surfaktan ditentukan menggunakan FT-IR, dan XRD. Hasil penelitian menunjukkan bahwa hasil karakteristik XRD dan FT-IR dari zeolit hasil sintesis sesuai dengan karakteristik zeolit A. Zeolit A termodifikasi menunjukkan karakteristik yang berbeda pada analisis FT-IR pada serapan bilangan gelombang 2852 dan 2920 cm-1,sedangkan hasil karakteristik XRD pada zeolit hasil sintesis menunjukkan fase kristal dengan puncak tertinggi pada 2θ = 7,20°, 10,18°, dan 23,99°. Kandungan nitrogen tertinggi pada pot yang berisi tanaman jagung dan SRUF sebesar 1,04%, sedangkan pada pot yang berisi tanaman jagung dan urea 0,99 %, dan pot tanpa penambahan pupuk sebesar 0,49%. Abstract Research has been studied on the effect of zeolite A-HDTMA as a slow release fertilizer agent on availability of soil nitrogen. The study began with synthesis of zeolite using kaolin by hydrothermal method. Synthesis of zeolite A is modified by HDTMA surfactant with concentration of 2x CEC. Nitrogen analysis using the Kjeldahl method. Characterization of zeolite A and modified zeolite A using FT-IR, and XRD. The results showed that the characteristics XRD and FT-IR of the synthetic zeolite according to the characteristics of zeolite A. Zeolite A modification showed different characteristics in FT-IR analysis of wave number absorption 2852 and 2920 cm-1, while result of XRD of synthesis zeolite shows the crystal phase with highest peak at 2θ = 7.20°, 1018°, dan 23.99°. The higest nitrogen content in a pot containing corn plant and slow release fertilizer is 1.04%, where in pot containing corn plant and urea 0.99%, and pot without additions fertilizer is 0.49%.
Peningkatan Kadar Etanol dalam Ciu dengan Metode Distilasi Adsorptif Menggunakan Zeolit Alam Rahayu, Anita; Sulistyaningsih, Triastuti; Jumaeri, Jumaeri
Indonesian Journal of Chemical Science Vol 9 No 2 (2020)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ijcs.v9i2.28727

Abstract

Abstrak Kebutuhan bahan bakar minyak di Indonesia, khususnya premium semakin meningkat, sedangkan ketersediaannya di alam semakin sedikit. Oleh karena itu, perlu dicari alternatif bahan bakar yang dapat diperbaharui, seperti Etanol. Etanol dengan kadar >96,5% v/v dapat digunakan sebagai campuran bahan bakar. Etanol dengan kadar >96,5% dapat dicapai dengan menggunakan metode distilasi adsorptif. Pada penelitian ini pemurnian etanol dilakukan menggukana dua cara yaitu distilasi sederhana dan distilasi adsorptif. Kadar awal sampel CIU A, CIU B dan CIU C berturut-turut adalah 9,92%, 44,60% dan 47,31% dengan menggunakan metode distilasi sederhana kadar etanol dapat meningkat menjadi 29,37%, 86,96% dan 90,81%. Meskipun metode distilasi sederhana dapat meningkatkan kadar etanol secara signifikan namun tidak dapat melampaui titik azeotropnya sehingga perlu adanya metode lain yaitu distilasi adsorptif dengan adsorben zeolit alam yang sudah teraktivasi. Dengan menggunakan metode distilasi adsorptif diperoleh kadar etanol tertinggi CIU A, CIU B dan CIU C berturut-turut sebesar 33,20%, 98,28% dan 99,22%. Kadar etanol tertinggi diperoleh saat pengambilan distilat ke-3 yaitu pada waktu 45 menit distilasi. Abstract The need for fuel oil in Indonesia, especially premium, is increasing, while its availability in nature is getting smaller. Therefore, it is necessary to look for alternative renewable fuels, such as Ethanol. Ethanol with a level of> 96.5% v / v can be used as a mixture of fuel. Ethanol with a concentration of> 96.5% can be achieved using the adsorptive distillation method. In this study, ethanol purification was carried out using two methods, simple distillation and adsorptive distillation. Initial levels of CIU A, CIU B and CIU C samples were 9.92%, 44.60% and 47.31% respectively using a simple distillation method. Ethanol levels could increase to 29.37%, 86.96% and 98.81%. Although a simple distillation method can significantly increase ethanol levels but cannot exceed its azeotropic point, it is necessary to have another method, namely adsorptive distillation with activated zeolite natural adsorbent. By using the adsorptive distillation method, the highest ethanol levels of CIU A, CIU B and CIU C were 33.20%, 98.28% and 99.22% respectively. The highest ethanol content was obtained when the third distillate was taken at 45 minutes distillation.
Sintesis Zeolit dari Kaolin sebagai Carrier Amoksisilin Wardani, Deta Sri; Mahatmanti, F. Widhi; Jumaeri, Jumaeri
Indonesian Journal of Chemical Science Vol 9 No 2 (2020)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ijcs.v9i2.28728

Abstract

Abstrak Pada penelitian ini dilakukan sintesis zeolit dari kaolin dan kemampuannya sebagai carrier amoksisilin. Proses sintesis zeolit diawali dengan kalsinasi kaolin menjadi metakaolin, kemudian ditambahkan larutan NaOH 3,0 M dan diaduk selama 2 jam. Proses pembentukan kristal zeolit menggunakan metode hidrotermal pada suhu 100ºC selama 8 jam. Zeolit hasil sintesis dikarakterisasi menggunakan instrumen FTIR, XRD, dan SAA. Zeolit sintetis digunakan sebagai carrier obat amoksisilin dengan parameter adsorpsi dan desorpsi. Hasil karakterisasi zeolit hasil sintesis dilihat dari gugus fungsi dan pola difraksi menunjukkan kemiripan dengan zeolit A. Diameter pori zeolit sintetis sebesar 7,44 Å dan luas permukaannya adalah 3,456 m2/g. Kondisi optimum zeolit hasil sintesis dalam mengadsorpsi amoksisilin terjadi pada pH 5 dan waktu kontak selama 75 menit, dan kapasitas adsorpsinya sebesar 5,356 mg/g atau 80,334%. Sedangkan untuk amoksisilin yang terlepas dari zeolit sebesar1,561 mg/g atau 29,144%. Abstract This research is to know the of zeolite synthesis based kaolin ability as drug carrier amoxicillin. The synthesis process of zeolite begin with calcination of kaolin to methakaolin, then added 3.0 M NaOH solution and stirred for 2 hours. Followed by the process of making zeolite crystals using hydrothermal method at temperature 100oC for 8 hours. Synthetic zeolites was characterized using FTIR, XRD, and SAA instruments. Synthetic zeolites are then used to drug carrier amoxicillin with parameter adsorption and desorption. The results of characterization of the synthesized zeolite seen from the functional groups and diffraction patterns show similarities with zeolite A. The pore diameter of synthetic zeolite is 7.44 Å and its surface area is 3.456 m2/g. While amoxicillin released for zeolite as 1.561 mg/g or 29.144%.
Preparasi dan Karakterisasi PP (Polypropylene) Termodifikasi LLDPE (Linear Low Density Polyethylene) dengan Teknik Pencampuran Biasa Khavilla, Vidya Putri; Wahyuni, Sri; Riyanto, Ari Fajar; Jumaeri, Jumaeri; Harjono, Harjono
Indonesian Journal of Chemical Science Vol 8 No 3 (2019)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ijcs.v8i3.32343

Abstract

Polymers or plastics are one of the important material and progress very quickly. The purpose of this research to modify PP with LLDPE by the usual mixing techniques to improve some of the mechanical properties of PP. The quantity of LLDPE added to PP varies in 1%, 5%, 10%, 15%, and 20%. This research also studied the properties of LLDPE/PP with the addition of silica fume. Mixing LLDPE/PP is using the Extruder Pelletizing Twin Screw Lien Chiny and mixing LLDPE/PP-Silica using the injection molding method. LLDPE/PP was tested the mechanical properties and the results are as follows: MFR test of 8.36 g/cm3, the impact strength 3.3582 kg/cm2, tensile strength of 361.599 kgf/cm2, the flexural test of 52.1 MPa, hardness 108.2 Rscale, and density of 2.8441 g/cm3. LLDPE/PP-Silica tested mechanical properties by testing the impact strength and tensile strength. The physical characteristics of LLDPE/PP and LLDPE/PP-Silica analyzed using FTIR and SEM give the results of the functional group Si-O-Si and the agglomeration of silica on the morphology of LLDPE/PP-Silica. From all the results of the mechanical test it can be concluded that LLDPE/PP 10% has the results that are considered optimum because the value of the impact strength is best from the other variations. The LLDPE/PP-Silica is not increased mechanical properties compared to LLDPE/PP. Polymers or plastics are one of the important material and progress very quickly. The purpose of this research to modify PP with LLDPE by the usual mixing techniques to improve some of the mechanical properties of PP. The quantity of LLDPE added to PP varies in 1%, 5%, 10%, 15%, and 20%. This research also studied the properties of LLDPE/PP with the addition of silica fume. Mixing LLDPE/PP is using the Extruder Pelletizing Twin Screw Lien Chiny and mixing LLDPE/PP-Silica using the injection molding method. LLDPE/PP was tested the mechanical properties and the results are as follows: MFR test of 8.36 g/cm3, the impact strength 3.3582 kg/cm2, tensile strength of 361.599 kgf/cm2, the flexural test of 52.1 MPa, hardness 108.2 Rscale, and density of 2.8441 g/cm3. LLDPE/PP-Silica tested mechanical properties by testing the impact strength and tensile strength. The physical characteristics of LLDPE/PP and LLDPE/PP-Silica analyzed using FTIR and SEM give the results of the functional group Si-O-Si and the agglomeration of silica on the morphology of LLDPE/PP-Silica. From all the results of the mechanical test it can be concluded that LLDPE/PP 10% has the results that are considered optimum because the value of the impact strength is best from the other variations. The LLDPE/PP-Silica is not increased mechanical properties compared to LLDPE/PP.
Optimalisasi Konsentrasi Demulsifier pada Proses Demulsifikasi MInyak Mentah dalam Slop Oil Resti, Ade; Kusumastuti, Ella; G, Agnesya Putri; Jumaeri, Jumaeri; Wijayati, Nanik
Indonesian Journal of Chemical Science Vol 9 No 2 (2020)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ijcs.v9i2.33502

Abstract

Recovery of the crude oil component in slop oil has the potential to increase the economic value of the slop oil component of the crude oil obtained can be reprocessed, with the demulsification process using two kinds of demulsifiers are Dem-02 and Dem-17. The purpose of this research is to study the variations in demulsifier added to the separated water, and effect of optimum concentration to characterize the crude oil added to viscosity, density, %BS&W, water content, oil content, ash content and metal content (Al, Fe, Ca and Si ) after warming up 24 hours. The results showed the amount of concentration variation of the demulsifier affected the amount of the percentage of water seperation. The more concentrations added the more water water sparation. The optimal demulsifier concentration is at 16.000 ppm. The results of SO-01 and SO-02 slop oil characterization before demulsification each had viscosity of 79.0861 cSt and 408.4904 cSt, density of 0.9842 gr / mL and 0.9806 gr / mL, percentage of BS&W 90% and 80% , ash content 0.9376% and 0.9619%. After demulsification of viscosity 10.2124 cSt and 37.0041, density 0.9052 mg / mL and 0.9119 gr / mL, BS&W percentage 30%, oil content 0.8350% and 1.0505%, water content 19.2% , ash content 1.8869% and 1.8822%. Al, Fe, Ca and Si metal content in slop oil. After demulsification increases with increasing ash content slop from demulsification.
Pengaruh Temperatur dan Rasio H2/Hidrokarbo Menggunakan Katalis CoMo/γ-Al2O3 pada Hydrotreating Combined Gas Oil Sucipto, Lukman; Rustyawan, Wawan; Jumaeri, Jumaeri; Alighiri, Dante; Wahyuni, Sri
Indonesian Journal of Chemical Science Vol 8 No 3 (2019)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ijcs.v8i3.33509

Abstract

Catalytic hydrodesulfurization of Combined Gas Oil (CGO) was used CoMo/ -Al2O3 catalyst. The reaction was carried out at the trickle bed reactor with temperature 265, 300, 300, 330°C and H2/Hydrocarbons ratio 288 and 310 m3/m3; pressure 65atm and LHSV 1.8 h-1. The study aims to determined the effect of H2/Hydrocarbons ratio and temperature in reducing sulfur content from CGO feeds. The Hydrotreating products were analyzed by Total Nitrogen Total Sulfur (TNTS), Gas Chromatography Mass Spectrometry (GC-MS), and Fourier Transform Infra Red (FTIR). HDS product spesifications also analyzed using picnometer, Total Acid Number (TAN), and Doctor test Solution. The results of the analysis catalytic HDS test showed that the temperature range of 265-330°C increased and the H2/Hydrocarbons ratio 288-310 Nm3/m3, the HDS conversion was increased until 91.94%. The value of rate HDS (kHDS) also increased with temperature and H2/Hc ratio until 1,46x10-7 s-1. The minimum energy activation required by the catalytic hidrodesulfurization reaction in ratio H2/Hc 288 m3/m3 was 54,25 kJ/mol. Keywords : hydrotreating, Catalyst CoMo/ -Al2O3, temperature, H2/Hc ratio
Uji Aktivitas Katalitik Hidrodesulfurisasi Campuran Light Gas Oil (LGO) dan Light Diesel Oil (LDO) dengan Katalis CoMo/ γ-Al2O3 Ulya, Isnaeni Nurul; Jumaeri, Jumaeri; Wawan, Wawan; Rahayu, Endah Fitriani; Wijayati, Nanik
Indonesian Journal of Chemical Science Vol 9 No 2 (2020)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ijcs.v9i2.33525

Abstract

Diesel oil is a fossil fuel that is the main source of energy consumed excessively which can cause problems in the environment such as air pollution. This study aims to eliminate sulfur type impurities in diesel oil by hydrotreating process, one of which is through the hydrodesulfurization process. In this study studied the catalytic activity of CoMo / Al2O3 in the HDS process of LGO and LDO blends using Reactor Fixed-Bed Pilot-Plant scale. The effect of parameters on the HDS process was studied by varying temperatures of 330oC, 350oC, 370oC and the influence of the Liquid Hourly Space Velocity (LHSV) 1 hour-1, 1.5 hours-1, 2 hours-1. The results showed an increase in HDS activity of up to 99.99% at an increase in temperature of 370oC with LHSV 1 hour-1.CoMo/γ-Al2O3 catalyst was able to reduce sulfur content at temperatures of 330oC, 350oC, and 370oC with LHSV 1 hour-1 of 16.56 ppm; 3.85 ppm; 3.79 ppm. From all the results of the analysis it can be concluded that the optimum HDS process at a temperature of 370oC and LHSV 1 hour-1. The decrease in sulfur content obtained is in accordance with European country standards (Euro V), where the sulfur diesel oil content is lower than 10 ppm. The catalytic activity of CoMo/γ-Al2O3 shows that it increases the HDS process and can reduce activation energy by 18.49 Kj/mol.
Sifat Magnetik Material La0,6Ba0,4MnO3 dari LaMnO3 dan BaMnO3 Menggunakan Metode Kombinasi Sol-Gel dan Solid State Saadah, Nelis; Jumaeri, Jumaeri; Putri, Witha Berlian; Munazat, Dicky; Kurniawan, Budhy
Indonesian Journal of Chemical Science Vol 9 No 1 (2020)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ijcs.v9i1.33816

Abstract

Perovskite manganite is a manganese oxide-based magnetic material with the basic structure of AMnO3. Interactions between structures and electron transport of materials are studied of the substitution at position A. Perovskite material has interesting physical properties, such as magnetoresistance and magnetocaloric. The goal of research is to study the magnetic properties La0,6Ba0,4MnO3 from single-phase LaMnO3 and BaMnO3 compounds by combination sol-gel and solid state methods. Synthesis of LaMnO3 and BaMnO3 compounds using gel sol methods. The synthesis of La0,6Ba0,4MnO3 using solid state method, that is by mixing LaMnO3 and BaMnO3 powder mechanically and sintering at 1000º C for 24 hours. The characterization magnetic properties of La0,6Ba0,4MnO3 using Vibrating Sample Magnetometer indicate that the material is paramagnetic classified as soft-magnetic.
Co-Authors Afwah, Apriliani Arifatul Agung Tri Prasetya Agung Tri Prasetya Agung Tri Prasetya Akhsanun Nadiyya Alfawwazi, Abdul Fattah Alighiri, Dante Amique, Iqnatu Nazila Ani Rusilowati Anita Rahayu Annisa, Riska Nurfirda Antonius Tri Widodo Arum Mawar Wati Budhy Kurniawan Cepi Kurniawan Darmadinata, Mariyanti Darmadinata, Mariyanti Darojah, Lia Inarotut Darojah, Lia Inarotut Deni Mustika Deninta Andara Perdana E Kusumastuti, E Edy Cahyono Eko Sri Kunarti Elfrida Ratnawati Ella Kusumastuti Ella Kusumastuti, Ella Endang Susilaningsih Endang Susilaningsih Ersanghono Kusumo, Ersanghono Etty Soesilowati Evalisa Apriliani, Evalisa F Widhi Mahatmanti G, Agnesya Putri Habibah, Febrina Nur Haditya, Ervan Bagus Hakim, Yanuar Hakim, Yanuar Harjito - Harjono Harjono Hastuti, Vidya Dwi Hastuti, Vidya Dwi Holyness Nurdin Singadimedja Isbullah, Isbullah Ismi Inayati, Ismi Istiana, shofa Jayanti, Yeni Fitriana Jayanti, Yeni Fitriana Juari Santosa Kamila, Naila Faza Kasmadi Imam Supardi Khafidhotun Naimah Khasanah, Ni'matul Khasanah, Nimatul Khavilla, Vidya Putri Latifah Latifah Latifah Latifah Lubis, Syafrina Yani Machiril, Dhonirul Machiril, Dhonirul Masrukan Masrukan Megasari, Nofita Megasari, Nofita Mohammad Alauhdin, Mohammad Munazat, Dicky Mutiara Dewi Rukmana, Mutiara Dewi Naila Faza Kamila Nanik Wijayati Ningrum, Ananda Nurmalia Kusuma Ningrum, Lis Setiyo Ningrum, Lis Setiyo Nino Rinaldi nurfainzani, pratiwi nurfainzani, pratiwi Nurhidayah Nurhidayah Patricia, Amelinda Diana Patricia, Amelinda Diana Pratiwi Dwi Jananti, Pratiwi Dwi Putri, Witha Berlian Qoyyima, Diana Rahayu, Endah Fitriani Rahmawati, Septiani Yuni Resti, Ade Riyanto, Ari Fajar Rusiyanto Rusiyanto, Rusiyanto S Mursiti Saadah, Nelis Savitri Savitri, Savitri Setyadji, Much. Sigit Priatmoko Sri Haryani Sri Juari Santosa Sri Juari Santosa Sri Kadarwati Sri Wahyuni SRI WARDANI Sucipto, Lukman Sulistyani, Martin Sulistyaningsih, Triastuti Sunarto, Wisnu Sutarno Sutarno Sutarno Sutarno Triastuti Sulistyaningsih Tunjungsari, Faricha Tunnisa, Tasqia Tunnisa, Tasqia Ulya, Isnaeni Nurul unnes, krisnawati kimia unnes, krisnawati kimia Uswatun Hasanah VH Putranto, VH w. Astuti w. T.P. Lestari Wahyu Rahmawati, Aliftia Wahyu Rahmawati, Aliftia Wahyuni, Promes Sari Wardani, Deta Sri Warlan Sugiyo Wawan Rustyawan Wawan Wawan Widiya Aprilianti Winning Kusuma, Alberto Krishna Ksatria Winning Kusuma, Alberto Krishna Ksatria Wisnu Sunarto Woro Sumarni Zulichatun, Siti - Zulichatun, Siti -