Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Proposal of analysis method to reduce back-flashover rate taking account of tower footing resistance Yusreni Warmi; Zulkarnaini Zulkarnaini; Abdul Rajab; Chitra Yuanisa; Rizki Oktrinanda Elyas; Andi M. Nur Putra; Zuriman Anthony
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i1.pp94-106

Abstract

The number of lightning stroke on the tower of the 150 kV Koto Panjang-Payakumbuh transmission line located the rocky area has been observed. The high value of tower footing resistance indicates the occurrence of the back-flashover in the transmission line at intensity of 74%. The back-flashover occurrence is dominantly triggered by the tower footing resistance value. Also, the rate of back-flashover has an effect on the value of the tower footing resistance by considering the number of electrode installations. A design is proposed for the grounding system of the tower footings in order to reduce the rate of back-flashover. The results presenting in numerical simulation indicates that it works properly after adding 4 electrodes. That is to say, installing 4 electrodes in each tower has successfully decreased the tower footing resistance value, back-flashovers rate 80% and 90-95% of present value respectively. The insulator voltage can be reduced to less than half of the present voltages as much as 30-50%. In more detail, in tower 77, the value of the tower footing resistance drops to 2.84 Ω, the flashover rate drops to 0.57/100 km/year and the insulator voltage drops to 0.99 MV when a disturbance occurs.
A new windings design for improving single-phase induction motor performance Zuriman Anthony; Erhaneli Erhaneli; Yusreni Warmi; Zulkarnaini Zulkarnaini; Anggun Anugrah; Sepannur Bandri
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp5789-5798

Abstract

Single-phase induction (asynchronous) motors are widely used at home. These motors have two windings and usually operate at a lower performance than 3-phase asynchronous motors which have three windings. For this reason, this study aims to design a new winding of a single-phase asynchronous motor by increasing the number of phases in the motor windings in order to increase the performance of the motor. This research was focused on 36 slot capacitor-start capacitor-run asynchronous motor. The design used 4 non-identical windings in the motor, where three windings acted as auxiliary windings and one winding acted as main winding. The rated current of the designed motor winding was 2.74 A for the main winding and 3.15 A for the auxiliary winding. The performance of the designed motor compared to the traditional single-phase asynchronous motor with the same structure of stator, rotor, and rated current. A traditional single-phase asynchronous motor had data: 1 HP, 220 V, 8.3 A, 1440 RPM, 50 Hz, and 4 poles. The results of this study indicated that the designed motor operated with power factors almost close to unity and had higher output power, torque, and efficiency than the traditional single-phase asynchronous motors.