Claim Missing Document
Check
Articles

Found 12 Documents
Search

Analisis Dan Implementasi Metode Steepest Descent Untuk Mengurangi Blur Pada Citra Digital I Gede Adnyana
Jurnal Teknologi Elektro Vol 12 No 1 (2013): (January - June) Majalah Ilmiah Teknologi Elektro
Publisher : Program Studi Magister Teknik Elektro Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Seringkali dalam pengambilan suatu objek tertentu hasil citra yang didapat mengalami degradasi atau penurunan kualitas citra, salah satunya terjadinya blur yang diakibatkan oleh kamera yang tidak fokus dalam menangkap suatu objek. Oleh karena itu diperlukan perbaikan untuk citra yang terdegradasi tersebut, dalam hal ini digunakan metode Steepest Descent dalam proses pengurangan blur. Ide dasar metode ini adalah melakukan iterasi untuk mengurangi blur dengan menelusuri titik yang paling curam. Blur yang dimasukkan pada citra digital adalah Gaussian dan Motion blur yang dibangkitkan melalui suatu blur generator. Performansi yang diujikan adalah PSNR (Peak Signal to Noise Ratio) dan Similarity citra hasil pengurangan blur. Dari hasil analisis didapatkan bahwa secara umum metode Steepest Descent dapat digunakan untuk mengurangi blur, namun kurang handal mengurangi blur dengan intensitas tinggi karena menghasilkan citra dengan PSNR kurang dari 30 dB dan Similarity yang meningkat.
Data Visualization for Building a Cyber Attack Monitoring Dashboard Based on Honeypot I Gede Adnyana; Ayu Manik Dirgayusari; Ketut Jaya Atmaja
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 4 (2024): Article Research Volume 8 Issue 4, October 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.14144

Abstract

Computer networks are essential for modern life, enabling efficient global information exchange. However, as technology advances, network security challenges grow. To enhance security, honeypots are used alongside firewalls, mimicking legitimate systems to attract hackers and analyze their attack methods. In this research, Cowrie and Dionaea honeypots are implemented. Cowrie targets brute force attacks on SSH, while Dionaea detects port scanning and denial of service (DoS) attacks. These honeypots effectively capture and log malicious activities, providing insights into attack patterns. The collected data is analyzed using the ELK Stack, which offers real-time visualization of attack trends, frequency, and methods. This analysis helps security teams quickly identify and mitigate threats. The integration of honeypots with the ELK Stack significantly enhances network defense by improving detection, analysis, and response to cyber threats. The analysis of the results shows that both honeypots effectively capture and record malicious activities entering the network, providing critical insights into the attack patterns employed by attackers. Within just minutes of deployment, the honeypots logged over 1,000 attacks, predominantly originating from botnets attempting to exploit system vulnerabilities. The captured log data is processed through the ELK Stack, allowing for real-time visualization of attack patterns, including geographic origins, attack frequency, and methods used. This enables security teams to proactively identify trends, assess risks, and implement targeted mitigation strategies more efficiently.