Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Stock Price Time Series Data Forecasting Using the Light Gradient Boosting Machine (LightGBM) Model Anggit Dwi Hartanto; Yanuar Nur Kholik; Yoga Pristyanto
JOIV : International Journal on Informatics Visualization Vol 7, No 4 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.4.01740

Abstract

In the world of stock investment, one of the things that commonly happens is stock price fluctuations or the ups and downs of stock prices. As a result of these fluctuations, many novice investors are afraid to play stocks. However, on the other hand, stocks are a type of investment that can be relied upon during disasters or economic turmoil, such as in 2019, namely the Covid-19 pandemic. For stock price fluctuations to be estimated by investors, it is necessary to carry out a forecasting activity. This study builds stock price forecasting using the Light Gradient Boosting Machine (LightGBM) algorithm, which has high accuracy and efficiency. To forecast stock price time series, the model used is the LightGBM ensemble. At the same time, they were optimizing the determination of hyperparameters using Grid Search Cross Validation (GSCV). This study will also compare the LGBM algorithm with other algorithms to see which model is optimal in forecasting price stock data. In this study, the test used the RMSE metric by comparing the original data (testing data) with the predicted results. The experimental results show that the LightGBM model can compete with and outperform boosting-based forecasting models like XGBoost, AdaBoost, and CatBoost. In comparing forecasting models, the same dataset is used so that the results are accurate, and the comparisons are equivalent. In future research, paying attention to the data during pre-processing is necessary because it has many outliers. In addition, it is necessary to include exogenous variables and external variables, which are determined to involve many parties.
Extreme Gradient Boosting Algorithm to Improve Machine Learning Model Performance on Multiclass Imbalanced Dataset Pristyanto, Yoga; Mukarabiman, Zulfikar; Nugraha, Anggit Ferdita
JOIV : International Journal on Informatics Visualization Vol 7, No 3 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.3.1102

Abstract

Unbalanced conditions in the dataset often become a real-world problem, especially in machine learning. Class imbalance in the dataset is a condition where the number of minority classes is much smaller than the majority class, or the number is insufficient. Machine learning models tend to recognize patterns in the majority class more than in the minority class. This problem is one of the most critical challenges in machine learning research, so several methods have been developed to overcome it. However, most of these methods only focus on binary datasets, so few methods still focus on multiclass datasets. Handling unbalanced multiclass is more complex than handling unbalanced binary because it involves more classes than binary class datasets. With these problems, we need an algorithm with features that can support adjustments to the difficulties that arise in multiclass unbalanced datasets. One of the algorithms that have features for adjustment is the ensemble algorithm, namely Xtreme Gradient Boosting. Based on the research, our proposed method with Xtreme Gradient Boosting showed better results than the other classification and ensemble algorithms on eight datasets with five evaluation metrics indicators such as balanced accuracy, the geometric-mean, multiclass area under the curve, true positive rate, and true negative rate. In future research, we suggest combining methods at the data level and Xtreme Gradient Boosting. With the performance increase in Xtreme Gradient Boosting, it can be a solution and reference in the case of handling multiclass imbalanced problems. Besides, we also recommended testing with datasets in the form of categorical and continuous data.