Claim Missing Document
Check
Articles

Found 37 Documents
Search

Pelatihan Menulis Artikel Ilmiah Hasil Riset Literatur Untuk Guru-Guru SMA Negeri 1 Mirit Kabupaten Kebumen Agung Prabowo; Agus Sugandha; Mashuri Mashuri; Bambang Hendriya Guswanto; Suroto Suroto; Agustini Tripena; Slamet Riyadi
Joong-Ki : Jurnal Pengabdian Masyarakat Vol. 3 No. 1: November 2023
Publisher : CV. Ulil Albab Corp

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56799/joongki.v3i1.2544

Abstract

Kemampuan guru-guru di SMAN 1 Mirit Kabupaten Kebumen dalam riset dan publikasi hasil riset, telah sampai pada tingkatan pertumbuhan yang optimal. Hal tersebut ditandai dengan keberhasilan publikasi tujuh artikel pada periode pelatihan menyusun artikel ilmiah hasil riset sederhana. Untuk mendorong produktifitas dan menjaga motivasi guru-guru dalam riset dan publikasi, perlu pendampingan berkelanjutan dan pelatihan penyusunan artikel ilmiah dengan metode yang berbeda, yaitu dengan metode riset literatur. Tujuan pengabdian ini adalah membekali guru-guru SMAN 1 Mirit dengan pengetahuan dan keterampilan melakukan riset literatur. Metode pengabdian meliputi ceramah, pengenalan software publish-or-perish dan VOS Viewerr, memilih dan mengunduh artikel serta menganalisis/me-review artikel dengan Lembar Hasil Review Literatur (LHRL). Pengabdian telah dilaksanakan pada Rabu, 23 Agustus 2023 dan Rabu, 8 November 2023 di Aula SMAN 1 Mirit. Peserta pengabdian adalah seluruh guru dan staf pendidikan. Pemberian materi melalui ceramah berupa pemaparan tentang riset literatur, sumber-sumber artikel untuk riset, mencari dan menemukan celah riset dari hasil mengkaji literatur-literatur yang digunakan dan cara menganalisis literatur berupa artikel ilmiah. Selain itu seluruh peserta pelatihan diajak untuk men-download aplikasi gratis yaitu Publish or Perish dan diberikan contoh praktik penggunaannya. Software lain yang diperkenalkan adalah penggunaan aplikas VOS Viewer yang sangat memudahkan untuk memperoleh informasi-informasi penting dalam suatu artikel. Pelatihan ini memberikan tambahan pengetahuan, keterampilan dan kemampuan peserta dalam mengelola artikel ilmiah.
A mathematical model for the spread of oil spills in high seas Guswanto, Bambang Hendriya; Achfasarty, Kiran Nirmala; Wardayani, Ari
Bulletin of Applied Mathematics and Mathematics Education Vol. 1 No. 1 (2021)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (617.829 KB) | DOI: 10.12928/bamme.v1i1.3877

Abstract

This study aims to model the distribution pattern of oil spills in high seas with the influence of wind movements. The mathematical model is derived from the random walk process of the oil spill particles by using a probability measure on a unit circle with the help of Laplace and Fourier transform . The solution to the model is also obtained by using Laplace and the Fourier transform. Based on the analysis of the solution of the model, the oil spill tends to spread in the direction of wind movement.. The speed and direction of the wind movement affect the speed and direction of the spread of the oil spill particles. The larger the speed of wind movement, the faster the oil particles movement.
On Conformable, Riemann-Liouville, and Caputo fractional derivatives Guswanto, Bambang Hendriya; Andini, Leony Rhesmafiski; Triyani, Triyani
Bulletin of Applied Mathematics and Mathematics Education Vol. 2 No. 2 (2022)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/bamme.v2i2.7072

Abstract

This article compares conformable fractional Derivative with Riemann-Liouville and Caputo fractional derivative by comparing solutions to fractional ordinary differential equations involving the three fractional derivatives via the numerical simulations of the solutions. The result shows that conformable fractional derivative can be used as an alternative to Riemann-Liouville and Caputo fractional derivative for order α with 1/2<α<1.
PENERAPAN METODE JACKKNIFE RIDGE REGRESSION UNTUK MENGATASI MULTIKOLINEARITAS (STUDI KASUS: KEMISKINAN DI PROVINSI JAWA TENGAH) Yulinda, Nisa Tri; Supriyanto, Supriyanto; Guswanto, Bambang Hendriya
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 17 No 1 (2025): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2025.17.1.16050

Abstract

Multicollinearity is one of the problems in linear regression that can lead to unstable parameter estimates. This study aims to address multicollinearity issues in multiple linear regression models applied to poverty data in Central Java Province using the Jackknife Ridge Regression method. The data used are secondary data from the Central Java Provincial Statistics Agency for 2022-2023, with the poverty rate as the dependent variable and eight independent variables representing poverty-related factors. This research was conducted using a literature review method and data analysis with R software. The results show that the Jackknife Ridge Regression method successfully mitigates multicollinearity, producing an accurate model. The final model indicates that average years of schooling, life expectancy, labor force participation rate, human development indeks, and regional gross domestic product have a negative effect on the poverty rate. These findings highlight the importance of improving education quality, healthcare, human development, and access to basic infrastructure as key strategies for poverty alleviation in Central Java Province.
Partial Fourier Transform Method for Solution Formula of Stokes Equation with Robin Boundary Condition in Half-space Maryani, Sri; Suhada, Dede Bagus; Guswanto, Bambang Hendriya
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 8, No 1 (2024): January
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v8i1.16917

Abstract

The area of applied science known as fluid dynamics studied how gases and liquids moved. The motion of the fluid in the liquid and vapour phases is described by a special system of partial differential equations. The research purpose of this article investigated the solution formula of incompressible Stokes equation with the Robin boundary condition in half-space case. The solution formula for Stokes equation was calculated using the partial Fourier transform. This calculation was carried out over the Weis’s multipliers theorem. Our calculation showed that the solution formula of Stokes equation with Robin boundary condition in half-space for velocity and pressure were contained multipliers as due to work Shibata & Shimada. Due to our consideration of the half-space situation, the partial Fourier transform approach is the most appropriate one to use to get the velocity and pressure for the Stokes equation with Robin boundary condition. Furthermore, research methods in this article, in the first stage, we use the resolvent problem of the model. Secondly, we apply the partial Fourier transform to the model problem and finally, we use inverse partial Fourier transform to get the solution formula of the incompressible type of Stokes equation for velocity and pressure. This result indicates that Weis' multiplier theorem also allows us to find the local well-posedness of the model problem in addition to the maximal Lp-Lq regularity class (Gerard-Varet et al., 2020).
Partial Fourier Transform Methods to Solve the Solution Formula of Stokes Equation in Half-Space Maryani, Sri; Zahratunnisa, Siti Fauziah; Sihwaningrum, Idha; Wardayani, Ari; Guswanto, Bambang Hendriya
JST (Jurnal Sains dan Teknologi) Vol. 11 No. 1 (2022)
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (382.102 KB) | DOI: 10.23887/jstundiksha.v11i1.39523

Abstract

Fluida adalah suatu bentuk materi yang memiliki zat cair, gas, dan plasma. Dalam kehidupan sehari-hari, cairan menjadi bagian penting, seperti bagian dari darah dan juga membantu tubuh mendapatkan nutrisi. Selain itu, beberapa fenomena lingkungan terkait erat dengan mekanika fluida. Konsep fluida membantu kita memahami perilaku fluida dengan berbagai kondisi. Telah diketahui bahwa gerak fluida dapat digambarkan dalam model matematika khususnya dalam bentuk persamaan diferensial parsial (PDE) dan disebut sebagai persamaan navier stokes (NSE). Persamaan navier stokes diturunkan dari keseimbangan kekekalan massa dan kekekalan momentum. Dalam penelitian ini mempertimbangkan rumus solusi linierisasi persamaan navier stokes (NSE) dengan masalah nilai batas awal (IBV) dalam ruang setengah tanpa tegangan permukaan. Masalah model yang dipertimbangkan meliputi jenis fluida nonlinier. Prosedur penelitian yang merupakan transformasi model masalah menggunakan transformasi fourier dari sistem persamaan yang baru. Kemudian dihitung rumus solusi dari sistem persamaan baru untuk kecepatan dan kepadatan dari masalah model dengan menggunakan metode transformasi Fourier dan transformasi fourier parsial. Strategi untuk mendapatkan solusi masalah model didasarkan pada analisis beberapa penyelesaian masalah model yang diperoleh dengan menggunakan transformasi laplace dari persamaan stokes. Oleh karena itu, secara khusus, rumus kecepatan v=(v_1,…,v_N ) dan kepadatan (x,t) dari persamaan stokes diperoleh.
Boundedness of Solution Operator Families for the Navier-Lame ́ Equations with Surface Tension in Whole Space Maryani, Sri; Wardayani, Ari; Guswanto, Bambang Hendriya
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 6, No 1 (2022): January
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v6i1.6217

Abstract

In this paper, we consider the boundedness of the operator families in whole space for Navier-Lame model problem in bounded domain of N dimensional Euclidean space (N≥2). To find the boundedness of the operator families, first of all we construct model problem in the form of the resolvent problem by using Laplace transform. Then, using Fourier transform, we get the solution formula of the model problem. In this paper, we use the qualitative methods to construct solution formula of velocity (u). This step is fundamental stage to find the well-posedness of the model problem. As we known that fluid motion can be described in partial differential equation (PDE). Essential point in PDE are finding existence and uniqueness of the model problem. One methods of investigating the well-posedness is R-boundedness of the solution operator families of the model problem. We can find the R-boundedness of the solution operator families not only in whole-space, half-space, bent-half space and in general domain. In this paper we investigate the R-boundedness of the solution operator families only in whole space. By using this R-boundedness, we can find that the multipliers which form of the operator families are bounded with some positive constant.