Claim Missing Document
Check
Articles

Found 12 Documents
Search

Metode Classifier Gaussian Naïve Bayes Untuk Klasifikasi Konsumsi Makanan Cepat Saji Pada Tingkat Resiko Obesitas Nursikuwagus, Agus; Suherman, Suherman
Jurnal Sistem Informasi Vol. 12 No. 2 (2025)
Publisher : Universitas Serang Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30656/jsii.v12i2.10650

Abstract

Proses klasifikasi pada konsumsi makanan cepat saji berdasarkan fakta nutrisi di menu McDonald’s tentunya perlu dilakukan karena untuk mengetahui pola konsumsi makanan dengan kandungan yang beresiko menyebabkan obesitas Obesitas merupakan salah satu penyakit yang tidak menular, akan tetapi banyak terjadi di kalangan remaja. Salah satu dampak dari adanya penyakit obesitas ini yaitu pesatnya arus globalisasi yang memberikan kemudahan pada pengaruh pola hidup, salah satunya yaitu pola konsumsi makanan. Dengan mengkonsumsi makanan cepat saji yang berlebihan maka akan meningkatkan seseorang itu terkena penyakit obesitas. Penelitian ini bertujuan untuk mengetahui pengklasifikasian serta pengelompokan mengenai makanan cepat saji yang nantinya dapat dilakukan prediksi apakah seseorang itu beresiko terkena penyakit obesitas ataupun tidak beresiko terkena penyakit obesitas. Algoritma yang digunakan pada penelitian ini yaitu model Gaussian Naïve Bayes menggunakan Bahasa pemrograman python yang kemudian akan dilakukan pembagian data training dan data testing untuk dilihat seberapa besar nilai akurasinya. Data fakta nutrisi pada makanan cepat saji di McDonald’s ini terdapat 500 dataset menggunakan parameter menu calories, cholesterol, sodium, carbohydrates, sugars, protein, vitamin, calcium, fat, iron, fiber, potassium, minerals, dan condition. Dengan implementasi yang telah dilakukan klasifikasi yaitu 20% data testing dengan jumlah data sebanyak 100 data. Akurasi dicapai 80% dari data training dengan jumlah data sebanyak 400 data
Hyper Parameter Tuning of Multilayer Convolutional Network and Augmentation Method for Classification Motive of Batik Nursikuwagus, Agus; hartono, tono; Nurwicaksono, M A; Choir, M M; Saputri, M A
Jurnal Informatika Vol. 17 No. 1 (2023): January 2023
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The purpose of this research is to create a batik motive image classification system to make it easier for the public to know the name of a type of batik motive. In carrying out this research, a quantitative method was used with seven kinds of batik motives that were augmented first, where 70% of the dataset was used for training and 30% for testing so that the accuracy and precision of the system were obtained. The result of this research is that the accuracy and precision of the system in classifying batik motive images is 0.985 or 98.5%. This high accuracy and precision were obtained because the quality of the previous dataset was improved by augmenting geometric and photometric. The machine learning method used was a Convolutional Neural Network which in previous studies also provided the highest accuracy and precision. The results of this study can be used for various purposes such as marketing, cultural reservation, and science.