Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Jurnal Buana Informatika

Identifikasi Sel Darah Merah Bertumpuk Menggunakan Pohon Keputusan Fuzzy Berbasis Gini Index Mandyartha, Eka Prakarsa; Kurniawan, Muchammad; Perdana, Rizal Setya
Jurnal Buana Informatika Vol 6, No 1 (2015): Jurnal Buana Informatika Volume 6 Nomor 1 Januari 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (717.118 KB)

Abstract

Pendekatan teknik data mining diusulkan untuk identifikasi sel darahmerah bertumpuk pada citra makroskopik sel darah untuk meningkatkan akurasipenghitungan jumlah sel darah merah. Fitur yang digunakan adalah geometri danwarna. Fitur geometri terdiri dari luasan dan eksentrisitas sel. Pada prosesidentifikasi digunakan pendekatan fuzzy. Setiap fitur direpresentasikan denganfungsi keanggotaan fuzzy. Identifikasi dilakukan berdasarkan aturan yangdiperoleh dari pohon keputusan fuzzy yang dibangkitkan. Pencabangan multisplitdigunakan pada pohon keputusan fuzzy. Pengukuran split atribut menggunakannilai gini index. Hasil pengujian pada 10 citra makroskopik sel darah yangmengandung 532 sel darah merah menunjukkan bahwa metode yang diusulkanmemiliki rata-rata akurasi sebesar 96,14%. Dengan akurasi yang tinggidiharapkan dapat meningkatkan akurasi diagnosis penyakit berdasarkan jumlahsel darah merah.
Prediksi Code Defect Perangkat Lunak Dengan Metode Association Rule Mining dan Cumulative Support Thresholds Perdana, Rizal Setya; Yuhana, Umi Laili
Jurnal Buana Informatika Vol 6, No 2 (2015): Jurnal Buana Informatika Volume 6 Nomor 2 April 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (317.005 KB)

Abstract

Kualitas perangkat lunak merupakan salah satu penelitian pada bidangrekayasa perangkat lunak yang memiliki peranan yang cukup besar dalamterbangunnya sistem perangkat lunak yang berkualitas baik. Prediksi defectperangkat lunak yang disebabkan karena terdapat penyimpangan dari prosesspesifikasi atau sesuatu yang mungkin menyebabkan kegagalan dalam operasionaltelah lebih dari 30 tahun menjadi topik riset penelitian. Makalah ini akandifokuskan pada prediksi defect yang terjadi pada kode program (code defect).Metode penanganan permasalahan defect pada kode program akan memanfaatkanpola-pola kode perangkat lunak yang berpotensi menimbulkan defect pada data setNASA untuk memprediksi defect. Metode yang digunakan dalam pencarian polaadalah memanfaatkan Association Rule Mining dengan Cumulative SupportThresholds yang secara otomatis menghasilkan nilai support dan nilai confidencepaling optimal tanpa membutuhkan masukan dari pengguna. Hasil pengujian darihasil pemrediksian defect kode perangkat lunak secara otomatis memiliki nilaiakurasi 82,35%.
Prediksi Code Defect Perangkat Lunak Dengan Metode Association Rule Mining dan Cumulative Support Thresholds Perdana, Rizal Setya; Yuhana, Umi Laili
Jurnal Buana Informatika Vol 6, No 2 (2015): Jurnal Buana Informatika Volume 6 Nomor 2 April 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i2.408

Abstract

Kualitas perangkat lunak merupakan salah satu penelitian pada bidangrekayasa perangkat lunak yang memiliki peranan yang cukup besar dalamterbangunnya sistem perangkat lunak yang berkualitas baik. Prediksi defectperangkat lunak yang disebabkan karena terdapat penyimpangan dari prosesspesifikasi atau sesuatu yang mungkin menyebabkan kegagalan dalam operasionaltelah lebih dari 30 tahun menjadi topik riset penelitian. Makalah ini akandifokuskan pada prediksi defect yang terjadi pada kode program (code defect).Metode penanganan permasalahan defect pada kode program akan memanfaatkanpola-pola kode perangkat lunak yang berpotensi menimbulkan defect pada data setNASA untuk memprediksi defect. Metode yang digunakan dalam pencarian polaadalah memanfaatkan Association Rule Mining dengan Cumulative SupportThresholds yang secara otomatis menghasilkan nilai support dan nilai confidencepaling optimal tanpa membutuhkan masukan dari pengguna. Hasil pengujian darihasil pemrediksian defect kode perangkat lunak secara otomatis memiliki nilaiakurasi 82,35%.
Identifikasi Sel Darah Merah Bertumpuk Menggunakan Pohon Keputusan Fuzzy Berbasis Gini Index Mandyartha, Eka Prakarsa; Kurniawan, Muchammad; Perdana, Rizal Setya
Jurnal Buana Informatika Vol 6, No 1 (2015): Jurnal Buana Informatika Volume 6 Nomor 1 Januari 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i1.398

Abstract

Pendekatan teknik data mining diusulkan untuk identifikasi sel darahmerah bertumpuk pada citra makroskopik sel darah untuk meningkatkan akurasipenghitungan jumlah sel darah merah. Fitur yang digunakan adalah geometri danwarna. Fitur geometri terdiri dari luasan dan eksentrisitas sel. Pada prosesidentifikasi digunakan pendekatan fuzzy. Setiap fitur direpresentasikan denganfungsi keanggotaan fuzzy. Identifikasi dilakukan berdasarkan aturan yangdiperoleh dari pohon keputusan fuzzy yang dibangkitkan. Pencabangan multisplitdigunakan pada pohon keputusan fuzzy. Pengukuran split atribut menggunakannilai gini index. Hasil pengujian pada 10 citra makroskopik sel darah yangmengandung 532 sel darah merah menunjukkan bahwa metode yang diusulkanmemiliki rata-rata akurasi sebesar 96,14%. Dengan akurasi yang tinggidiharapkan dapat meningkatkan akurasi diagnosis penyakit berdasarkan jumlahsel darah merah.
Identifikasi Sel Darah Merah Bertumpuk Menggunakan Pohon Keputusan Fuzzy Berbasis Gini Index Eka Prakarsa Mandyartha; Muchammad Kurniawan; Rizal Setya Perdana
Jurnal Buana Informatika Vol. 6 No. 1 (2015): Jurnal Buana Informatika Volume 6 Nomor 1 Januari 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i1.398

Abstract

Pendekatan teknik data mining diusulkan untuk identifikasi sel darahmerah bertumpuk pada citra makroskopik sel darah untuk meningkatkan akurasipenghitungan jumlah sel darah merah. Fitur yang digunakan adalah geometri danwarna. Fitur geometri terdiri dari luasan dan eksentrisitas sel. Pada prosesidentifikasi digunakan pendekatan fuzzy. Setiap fitur direpresentasikan denganfungsi keanggotaan fuzzy. Identifikasi dilakukan berdasarkan aturan yangdiperoleh dari pohon keputusan fuzzy yang dibangkitkan. Pencabangan multisplitdigunakan pada pohon keputusan fuzzy. Pengukuran split atribut menggunakannilai gini index. Hasil pengujian pada 10 citra makroskopik sel darah yangmengandung 532 sel darah merah menunjukkan bahwa metode yang diusulkanmemiliki rata-rata akurasi sebesar 96,14%. Dengan akurasi yang tinggidiharapkan dapat meningkatkan akurasi diagnosis penyakit berdasarkan jumlahsel darah merah.
Prediksi Code Defect Perangkat Lunak Dengan Metode Association Rule Mining dan Cumulative Support Thresholds Rizal Setya Perdana; Umi Laili Yuhana
Jurnal Buana Informatika Vol. 6 No. 2 (2015): Jurnal Buana Informatika Volume 6 Nomor 2 April 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i2.408

Abstract

Kualitas perangkat lunak merupakan salah satu penelitian pada bidangrekayasa perangkat lunak yang memiliki peranan yang cukup besar dalamterbangunnya sistem perangkat lunak yang berkualitas baik. Prediksi defectperangkat lunak yang disebabkan karena terdapat penyimpangan dari prosesspesifikasi atau sesuatu yang mungkin menyebabkan kegagalan dalam operasionaltelah lebih dari 30 tahun menjadi topik riset penelitian. Makalah ini akandifokuskan pada prediksi defect yang terjadi pada kode program (code defect).Metode penanganan permasalahan defect pada kode program akan memanfaatkanpola-pola kode perangkat lunak yang berpotensi menimbulkan defect pada data setNASA untuk memprediksi defect. Metode yang digunakan dalam pencarian polaadalah memanfaatkan Association Rule Mining dengan Cumulative SupportThresholds yang secara otomatis menghasilkan nilai support dan nilai confidencepaling optimal tanpa membutuhkan masukan dari pengguna. Hasil pengujian darihasil pemrediksian defect kode perangkat lunak secara otomatis memiliki nilaiakurasi 82,35%.