Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Makara Journal of Technology

Argon Ion Irradiation Effect on the Magnetic Properties of Fe-Al2O3 Nano Granular Film Purwanto, Setyo; Sakamoto, Isao
Makara Journal of Technology Vol. 18, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

We studied the effect of Argon (Ar) ion irradiation on Fe-Al2O3 nanogranular thin film. X-ray diffraction (XRD) patterns show that the ion dose might promote the growth of the Fe2O3 phase from an amorphous phase to a crystalline phase. The magnetic and magnetoresistance properties were investigated using a vibrating sample magnetometer (VSM) and a four point probe (FPP). The results suggest that percolation concentration occurred at the 0.55 Fe volume fraction and with a maximum magnetoresistance (MR) ratio of 3%. The present MR ratio was lower than that of previous results, which might be related to the existence of the α-Fe2O3 phase promoted by Ar ion irradiation. CEMS spectra show ion irradiation induces changes from superparamagnetic characteristics to ferromagnetic ones, which indicates the spherical growth of Fe particles in the Al2O3 matrix.
Thermal Properties, Crystallinity, and Oxygen Permeability of Na-montmorillonite Reinforced Plasticized Poly(lactic acid) Film Yuniarto, Kurniawan; Purwanto, Yohanes Aris; Purwanto, Setyo; Welt, Bruce A.; Purwadaria, Hadi Karia; Sunarti, Titi Candra
Makara Journal of Technology Vol. 20, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Introducing unmodified organically clay/Na-montmorillonite (Na-MMT) was applied into plasticized poly(lactic acid) PLA to produce film composites by direct casting. Film composite structure, the crystallinity degree and form, and thermal properties were carried out using X-ray diffraction and differential scanning calorimetry. The effect of Na- MMT to the tortuous path and the crystallinity degree in the plasticized film composites were calculated in oxygen barrier properties. Chromatogram film composites resulted in an intercalated structure that showed peak diffraction angle shift at about 0.2o. Then, a peak diffraction pattern was indicated in α-form crystal structure. Plasticized PLA has a crystallinity degree at 34%, and the addition of Na-MMT increased to 52%. Glass transition temperature improved from 53 °C to 57 °C, and melting temperature remained stable at 167 °C. Filling Na-MMT into plasticized PLA caused to enhance a tortuous path about 28% and improved the oxygen permeability to 80%. As a result, the addition of Na- MMT of 3% into plasticized PLA during film composite preparation using the mixing method resulted in balancing properties related to the crystallinity degree, thermal properties, and oxygen barrier properties.
The Effect of Irradiation of Fe and Ar Ion on the Surface Morphology of Diamond Thin Film Related to the Magnetoresistance Property Mustofa, Salim; Purwanto, Setyo; Mishima, Kenji
Makara Journal of Technology Vol. 20, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The irradiation of Fe and Ar ion was applied on the surface of diamond/Si thin film to know its effect on the morphology of thin film.The magnetoresistance property was also studied. Ion irradiation treatment using Fe ion followed by argon ion at the energy of 70keV and a dose of 1 x 1015 ion/cm2 have been conducted on the surface of two types of thin film, diamond/Si (111) and diamond/Si (100). Both thin films were made by using a CVD method, and the thickness of the thin film is 1000-nm. From simulations using the software called Stopping and Range of Ions in Matter (SRIM), it is known that Fe and Argon ion penetration into the surface of the thin film are respectively 512 and 603 Angstroms. After that the thin film sample was irradiated with ion Fe and Ar, and the property behavior of the morphological change of thin film were studied through Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The grain size range of thin film on diamond films / Si (100) was reduced from 115-322 nm to 147-169 nm, suggesting the effect of irradiation on the surface morphology. The magnetoresistance property is approximately 0.15% at room temperature and magnetic field external H = 0.8 Tesla.
Ascorbic Acid Degradation in Cut Lemon Packaged Using Oxygen Scavenging Active Film During Storage Yuniarto, Kurniawan; Purwanto, Setyo; Welt, Bruce Ari; Lastriyanto, Anang
Makara Journal of Technology Vol. 22, No. 3
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Oxygen scavenging active film can be used to prevent diffusion of free oxygen due to the action of permeation mechanism. In this study, biodegradable oxygen scavenging plastic film was designed by incorporating an antioxidant agent into plasticized polylactic acid or PLA-PEG (PPLA). Butylated hydroxytoluene (BHT) was added at different concentrations into the matrix of the PPLA film using a direct casting method to produce oxygen scavenging active film. The antiradical activity of the oxygen scavenging active film was observed, which could be applied for preventing vitamin C degradation in cut lemon during storage. The antiradical activity of the active film composite reduced after 4 days of storage at 28 °C. Initial antiradical activities were measured at 99.90%–99.91% after introducing 1%, 5%, and 10% concentrations of BHT into the matrix of the PPLA film. DPPH analysis indicated that a larger concentration of BHT exhibited higher antiradical activity after 4 days of storage surrounded with free oxygen. The final antiradical activities were 35.45%, 54.56%, and 81.65% at 1%, 5%, and 10% BHT concentrations, respectively. Therefore, incorporating a higher BHT fraction into the oxygen scavenging active film composite can certainly prevent the oxidation of cut lemon. The respective final vitamin C levels were 13.5%, 20.6%, and 22.5% after 4 days of storage.
Effects of Plasma Sintering on the Post TIG Weld Joint of Fe-15Cr-25Ni Austenitic Stainless Steel Parikin, Parikin; Dani, Mohammad; Dimyati, Arbi; Insani, Andon; Deswita, Deswita; Aziz, Ferhat; Mardiyanto, Mardiyanto; Mustofa, Salim; Purwanto, Setyo; Adhika, Damar Rastri; Syahbuddin, Syahbuddin; Huang, Ching An
Makara Journal of Technology Vol. 26, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Arc-plasma sintering (APS) for 5 s has been applied to the post tungsten inert gas (TIG) weld joint of Fe–15Cr–25Ni austenitic stainless steel (ASS). The treatment is intended to observe the effect of heat generated by plasma on micro-crystal structures around the fusion zone (FZ), especially internal stress relief in steel after being subjected to welding. The effect of stress relief in weld was measured using the neutron diffraction technique. ASS that is predominantly composed of Fe, Cr, and Ni elements, with contents of 57%, 15%, and 25%wt. respectively, was cut into two parts. Both parts were then welded with TIG without filler with a current and voltage of 60 A and 50 V, respectively. After APS for 5 s, the sample was characterized and analyzed using high-resolution powder neutron diffractometer at a high-temperature laboratory facility. The results show that the tensile residual stress decreased with the APS heat input. The residual stresses significantly decreased from 82.40 MPa to 1.21 MPa in the FZ and continued almost evenly from 65.92 MPa to 1.24 MPa in the heat-affected zone (HAZ). The residual stress is a tensile stress that can reduce the mechanical strength of materials. This condition is also applicable to applied loads. A microstructure gives a confirmation that the C element migrates from the FZ to HAZ. The content was very high in dark traces. The C element reacts to Cr and O to form chromium carbide (Cr23C6) and chromium carbonyl (CrC6O6), respectively. It rapidly migrates among its grain boundaries. It may also weaken materials and probably initiate intergranular cracks.