Claim Missing Document
Check
Articles

Found 20 Documents
Search

Perekrutan Karyawan Berbasis PSO dengan Menggunakan Metode Algoritma C45 Studi Kasus PT. Mutual Plus Priyono, Priyono; Faisal, Muhammad; Suryadhitia, Rachmat; Suhardjono, Suhardjono
Jurnal Teknik Informatika Vol. 4 No. 2 (2018): JTI Periode Agustus 2018
Publisher : LPPM STMIK ANTAR BANGSA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51998/jti.v4i2.263

Abstract

Abstract—In recruiting qualified employees and in accordance with the qualifications required by PT.Mutual Plus company there are 9 categories in the selection of recruitment of employees are the completeness of the File, Age, Marriage Status, Education, Department, Certificate, Experience and Test TPA and Escaped or not prospective employees. The identification of the problem raised is a large measure of accuracy on the Algortima C4.5 method with PSO optimization (Particle Swarm Optimization) to select employee acceptance. Of the 9 predictor variables, the selection of attributes is selected so that the 9 attributes are selected. Experimental results show that the PSO-based C 4.5 (Particle Swarm Optimization) algorithm has an accuracy of 95.52%, AUC of 0.965. Experimental results show that employee acceptance selection at Mutual Plus company using C 4.5 based PSO has high accuracy. Intisari— Dalam merekut karyawan-karyaan yang berkualitas dan sesuai dengan kualifikasi yang di butuhkan perusahaan PT.Mutual Plus terdapat 9 kategori dalam seleksi perekrutan karyawan diantaranya adalah Kelengkapan Berkas, Umur, Status Pernikahan, Pendidikan, Jurusan, Sertifikat, Pengalaman dan Test TPA serta Lolos atau tidaknya calon karyawan. Identifikasi masalah yang diangkat merupakan ukuran besar akurasi pada metode Algortima C4.5 dengan optimasi PSO (Particle Swarm Optimization) untuk menyeleksi penerimaan karyawan. Dari 9 variabel prediktor dilakukan seleksi atribut sehingga menghasikan terpilihnya 9 atribut yang digunakan. Hasil eksperiment menunjukkan bahwa algoritma C 4.5 berbasis PSO (Particle Swarm Optimization) memiliki tingkat akurasi sebesar 95,52% , AUC sebesar 0,965. Hasil eksperimen menunjukkan seleksi penerimaan karyawan pada perusahaan Mutual Plus menggunakan metode algoritma C 4.5 berbasis PSO memiliki akurasi yang tinggi. Kata Kunci— Algoritma C 4.5, Berbasis PSO (Particle Swarm Optimization), Seleksi karyawan
Sistem Pakar Diagnosa Penyakit Pada Kucing Menggunakan Metode Forward Chaining Ridwansyah; Jajang Jaya Purnama; Hermanto; Suhardjono; Abdul Hamid
Jurnal Ilmu Komputer dan Bisnis Vol. 11 No. 2a (2020): Special Issue Vol. 11 No. 2a (2020)
Publisher : STMIK Dharmapala Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47927/jikb.v11i2a.27

Abstract

Kucing merupakan hewan yang popular dan sangat disukai di kalangan masyarakat baik dalam bentuk fisik yang lucu maupun tingkah laku yang menggemaskan merupakan salah satu alasan yang membuat banyak orang memelihara hewan peliharaan yang satu ini, dan memelihara kucing juga merupakan sunah rasul bagi umat muslim. Kepopuleran memelihara kucing membuat jumlah peminat kucing di Indonesia sangatlah besar, dan berbagai masalahpun akan terjadi ketika pemilik kucing mendapati kucing kesayangannya sakit. Banyak kucing terserang penyakit, kucing peliharaan ataupun kucing liar, penyakit kucing diantaranya: Helminthiasis, Skabies, Ektoparasit, Koksidiosis, Feline Viral Rhinotracheitis, Feline Caliviral disease, Felice Panleukopenia, Earmite. Sistem pakar adalah metode ilmu yang bertujuan untuk menyelesaikan permasalahan yang bisa dibilang cukup rumit, yang biasanya permasalahan itu hanya bisa diatasi oleh para ahli tertentu. Pemelihara kucing yang tidak mengetahui tentang penyakit yang diderita terhadap kucing akan menjadi permasalahan yang besar maka dengan itu dapat dibuatkan dan dibangun suatu sistem pakar. Dengan sistem yang dibuat dan dibangun tersebut dapat membantu dalam mendiagnosis penyakit yang diderita pada kucing dan memberi solusi cara pengobatan dan pencegahannya.
Rancang Bangun Sistem Informasi Penerimaan Siswa Baru Berbasis Web Pada Yayasan Bina Anak Mandiri Bekasi Wijaya, Ganda; Herlina, Maria; Olivia, Shinta; Suhardjono, Suhardjono
SPEED - Sentra Penelitian Engineering dan Edukasi Vol 11, No 2 (2019): Speed 2019
Publisher : APMMI - Asosiasi Profesi Multimedia Indonwsia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (575.412 KB)

Abstract

Abstract – The development of information systems until now is so rapid, even so many people around the world depend on developing technology. Including the new student admission process carried out by several schools, where currently there are still educational institutions or schools in implementing new student admissions manually, including the Bina Anak Mandiri Foundation, is an organization engaged in kindergarten (TK) school education , starting from the acceptance of new students, and making reports still using a manual system. In providing the best service for prospective student parents and providing convenience for staff in KEMAS Kindergarten, a new student admission information system and computerized and web-based tuition fees are needed. The purpose of the research was done so that KEMAS Kindergarten and prospective student parents were easier, more effective and efficient in implementing SPP registration and payment using the web. The method used is more directed to observation with the waterfall model. With the construction of this system, the work of staff and parents of prospective students is easier, especially in the process of registering new students at KEMAS Kindergarten.  Keywords: Acceptance of New Students, Information Systems
Aplikasi Mobile Sistem Pakar Dalam Mengidentifiaksi Diagnosis Penyakit Kucing Ridwansyah Ridwansyah; Jajang Jaya Purnama; Hermanto Hermanto; Suhardjono Suhardjono; Abdul Hamid
INFORMATICS FOR EDUCATORS AND PROFESSIONAL : Journal of Informatics Vol 5 No 1 (2020): INFORMATICS FOR EDUCATORS AND PROFESSIONAL : JOURNAL OF INFORMATICS (Desember 202
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat Universitas Bina Insani

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51211/itbi.v5i1.1414

Abstract

Abstrak: Adanya sebuah aplikasi saat ini dapat digunakan dalam beberapa hal khususnya sistem pakar. Sistem pakar penyakit kucing merupakan sistem yang dapat mengidentifikasi penyakit pada kucing, yang dikarenakan hewan tersebut sangat populer di masyarakat khususnya Indonesia sangatlah besar peminatnya. Hewan ini sangat disukai karena bentuknya yang lucu dan perilaku yang menggemaskan, terlebih nabi Muhammad juga menyukai hewan ini dan jika kita merawatnya makan sunah rasul yang kita dapat ini merupakan kepercayaan umat muslim. Dalam memelihara kucing berbagai masalah akan terjadi dimana kucing yang kita pelihara dalam keadaan sakit dan berbagai virus yang menyerang kucing misalnya penyakit kucing scabies, penyakit kucing feline caliviral disease, penyakit kucing helminthiasis, penyakit kucing koksidiosis, penyakit kucing felice panleukopenia, penyakit kucing ektoparasit, penyakit kucing, penyakit kucing feline viral rhinotracheitis dan penyakit kucing Earmite. Dengan adanya aplikasi sistem pakar yang bertujuan untuk menyelesaikan suatu permasalahan yang dapat di anggap cukup rumit dan hanya bisa diatasi para ahli atau para pakar tertentu. Pemilik kucing yang tidak mengetahui adanya penyakit yang dialami oleh kucing yang dipeliharanya maka akan menjadi permasalahan yang besar. Oleh karena itu dengan adanya aplikasi sistem pakar tersebut dapat membantu dalam melakukan diagnosis penyakit pada kucing dan memberikan alternatif pengobatan, penanganan dan pencegahannya. Kata kunci: Aplikasi Sistem Pakar, Forward Chaining, Penyakit Kucing. Abstract: The existence of an application today can be used in several ways, especially expert systems. The cat disease expert system is a system that can identify diseases in cats, which is because these animals are very popular in society, especially in Indonesia, and are in great demand. This animal is very popular because of its cute shape and adorable behavior, especially the prophet Muhammad also likes this animal and if we take care of it, eat the Prophet's Sunnah which we get is the belief of Muslims. In keeping cats, various problems will occur where the cat we keep is sick and various viruses that attack cats, for example, scabies cat disease, feline caliviral disease, cat helminthiasis, cat coccidiosis, felice panleukopenia cat disease, ectoparasite cat disease, cat disease feline cat disease, viral rhinotracheitis and Earmite cat disease. With the existence of an expert system application that aims to solve a problem that can be considered quite complicated and can only be overcome by certain experts or experts. Cat owners who do not know about the disease experienced by the cat they keep will be a big problem. Therefore, with the application of this expert system, it can help diagnose diseases in cats and provide alternative treatments, treatments and prevention. Keywords: Cats, Expert Systems, Forward Chaining
Aplikasi Program untuk Mendiagnosa Bakteri Chlamydia Trachomatis Menggunakan Metode Waterfall Suhardjono - AMIK BSI Jakarta
Bianglala Informatika Vol 5, No 2 (2017): Bianglala Informatika 2017
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (698.138 KB) | DOI: 10.31294/bi.v5i2.2554

Abstract

Abstract-Chlamydia is transmitted diseases contagious most commonly found and known the main cause of disease inflammation of the pelvis (pelvis), that will spoil a female reproductive and eye disease caused infertility (sterility) in women. Lack of information on chlamydia bacterium trachtomatis so with the expert system in implementasikan to diagnose chlamydia trachtomatis disease is needed to know disease early with the results of this program shows that expert system can be used as a media that can tell us and consultation of bacteria chlamydia trachomatis , and how to avoid.Keywords: Chlamydia Bacterium Trachtomatis, Diagnose Bacterium, Expert System, Waterfall. Abstrak - Chlamydia merupakan penyakit kelamin menular yang paling umum dijumpai dan dikenal penyebab utama penyakit peradangan pada pelvis (panggul), yang akan merusak alat reproduksi perempuan dan penyakit mata disebabkan infertilitas (kemandulan) pada perempuan. Kurangnya informasi tentang bakteri chlamydia trachtomatis maka dengan adanya sistem pakar yang di implementasikan untuk mendiagnosa penyakit chlamydia trachtomatis sangat dibutuhkan untuk mengetahui penyakit sejak dini dengan hasil program ini menunjukkan bahwa sistem pakar dapat dipergunakan sebagai suatu media yang dapat memberikan informasi dan konsultasi tentang bakteri Chlamydia Trachomatis, dan cara menghindarinya.Kata Kunci: Bakteri Chlamydia Trachomatis, DiagnosaBakteri, Sistem Pakar,  Waterfall.
Prediksi Waktu Kelulusan Mahasiswa Menggunakan SVM Berbasis PSO Suhardjono S; Ganda Wijaya; Abdul Hamid
Bianglala Informatika Vol 7, No 2 (2019): Bianglala Informatika 2019
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (783.749 KB) | DOI: 10.31294/bi.v7i2.6654

Abstract

Waktu kelulusan dengan tepat waktu bagi mahasiswa sangatlah penting untuk menentukan pekerjaan dalam perkuliahan, maka dari itu perlu di prediksi kelulusan mahasiswa sebelum akhir semester dengan menggunakan model support vector machine yang memiliki keuntungan dalam membuat data menjadi optimal tetapi support vector machine memiliki kekurangan dalam pengoptimal parameter. Particle swarm optimization dapat memperbaiki kekurangan yang terdapat pada support vector machine dalam hal mengoptimalkan parameter. Dari hasil yang didapat dengan menggunakan model support vector machine berbasis particle swarm optimization dapat meningkatkan akurasi prediksi dari sebesar 85.81% menjadi 86.43%. dengan kenaikan sebesar 00.62%. Sehingga dalam memprediksi kelulusan mahasiswa dapat akurat dan secara optimal dalam mengukur parameter yang diperlukan
Analisis Prediksi Kelulusan Mahasiswa Menggunakan Decission Tree Berbasis Particle Swarm Optimization Hendra Hendra; Mochammad Abdul Azis; Suhardjono Suhardjono
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 9, No 1 (2020): MARET
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (612.867 KB) | DOI: 10.32736/sisfokom.v9i1.756

Abstract

Good accreditation results are the goal of the college. With good accreditation, prospective students can glance at and enter the tertiary institution. To achieve this, there are several aspects that affect good accreditation results, one of which is graduate students who play an important role in determining accreditation. Timely graduate students can benefit the college or a student. Graduates can be predicted before the final semester using a method one of which is the decision tree. Decision tree is a method that is simple and easy to understand by producing rules in the form of a decision tree, but using a decision tree model alone is not enough to produce optimal results. So we need a method for optimization that is particle swarm optimization with advantages can improve accuracy by eliminating unused features. From the results of research with primary data of 2000-2003 graduate students in Amik PPMI Tangerang explained that the particle swarm optimization method can increase accuracy by 87.56% and increase by 01.01% from the decision tree method with a value of 86.55%. From the particle swarm optimization method can also find out which unused attributes have no weight, so that way can improve accuracy. From the results of the increase, it can be used by the Amik University of Tangerang to prevent students from graduating on time.
New Technology in Automated Vehicles to Improve Passenger Safety Suhardjono Suhardjono; Priyono Priyono; Agus Sri Iswiyanti; Dudi Parulian; Arman Syah Putra; Nurul Aisyah
International Journal of Educational Research & Social Sciences Vol. 2 No. 3 (2021): June 2021
Publisher : CV. Inara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51601/ijersc.v2i3.96

Abstract

The background of this research is by prioritizing how to improve the safety of passengers on a vehicle with increased security so that if an accident occurs, the passenger does not suffer any injury. If necessary, it is not scratched on the body. With this research, it is necessary to increase security in order to provide maximum protection. for passengers and motorists. The method used in this study using the literature review method based on research that has been done previously so that it can be the basis for this research. With the literature review, the research will be able to find new research problems so that this research can be the latest research in order to serve as the basis for future research. In this study, we will find out how to protect passengers on a vehicle with ways that passengers can do so that the security side can be improved. Therefore, the use of security in a vehicle is very important so that it can help drivers and passengers in driving. In this study will produce a proposed system that can be used as a basis as a guide in order to protect passengers and motorists and can improve the safety side of driving.
Application Design "Test Job Application" On Android OS Using The AHP Algorithm Suharjono; Hari Sugiarto; Istiqomah Sumadikarta; Muhammad Ryansyah; Muhammad Hilman Fakhriza; Arman Syah Putra
International Journal of Educational Research & Social Sciences Vol. 2 No. 5 (2021): October 2021
Publisher : CV. Inara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51601/ijersc.v2i5.185

Abstract

The background of this research is how to make an application that makes it easier for job seekers to find work with an Android-based application method so that it can be done anywhere and anytime with a very small quota. Helped and employers and companies will also be helped. The method used in this research is to use the method of studying literature or literature by reading many journals related to this research, after that make a prototype so that it can be given an appearance. This research will be able to see whether it is successfully used or not. The problem raised in this research is how to help job seekers find work without leaving the house and being able to search for jobs around the world using only an Android based application that can be done from home. This research produces a prototype system that will be made in the future, so that it can help workers in finding work and companies in finding workers.
IMPLEMENTASI PARTICLE SWARM OPTIMIZATION UNTUK OPTIMALISASI DATA MINING DALAM EVALUASI KINERJA ASISTEN DOSEN Indah Ariyati; . Ridwansyah; . Suhardjono
JURNAL INFORMATIKA DAN KOMPUTER Vol 3, No 2 (2018): SEPTEMBER - JANUARI 2019
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat - Universitas Teknologi Digital Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (345.082 KB) | DOI: 10.26798/jiko.v3i2.127

Abstract

The existing complaints on the performance of assistant lecturers show the impact of the absence of better competence, so that an accurate evaluation process on the performance of lecturer assistants based on their duties and obligations in a certain period of time. The evaluation process required an improved model of accuracy which was a formidable challenge in the selection of more efficiency and effectiveness features, in which case we proposed a method of particle swarm optimization to improve the accuracy of neural network methods that experienced problems in the selection of features that were weighted in detailed analysis by particle swarm optimization with neural network learning performance. This study aims to find a complex alternative solution in the evaluation of lecturer's assistant where research is based on parameters obtained from UCI Machine Repository. The final research shows that particle swarm optimization method can in-crease the accuracy of 75.56% from the previous value of 51.75% and increase the kappa value of 0,632 from the previous kappa value 0,276. The result of developing particle swarm optimization toward neural network by increasing the accuracy and kappa value can be used as controlling periodically in evaluating the performance of assistant lecturer.