Agus Rusgiyono
Departemen Statistika, Fakultas Sains Dan Matematika, Universitas Diponegoro

Published : 107 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : MATEMATIKA

APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Rusgiyono, Agus
MATEMATIKA Vol 4, No 3 (2001): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (61.498 KB)

Abstract

Diberikan populasi dengan densitas  dengan  parameter , dan dari padanya  diambil sample acak . Selanjutnya taksiran titik  adalah suatu fungsi  dari   bernilai riil . Interval taksiran terhadap  berdasarkan taraf keyakinan , dengan  , ditentukan berdasarkan bantuan besaran pivotal  yang mempunyai distribusi tidak bergantung pada . Diketahui  dan  adalah dua statistik yang memenuhi  untuk mana  dengan  tidak bergantung pada ,  maka interval acak adalah interval keyakinan untuk .
UJI KOMPARATIF TERHADAP DUA STATISTIK UJI TYPE KOLMOGOROV SMIRNOV Rusgiyono, Agus
MATEMATIKA Vol 12, No 2 (2009): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (30.249 KB)

Abstract

In several statistics handbooks of statistics gave the following formula for the computation of the Kolmogorov goodness of fit statistic is    . And the alternative formula test statistic  to  measure  distance for two distribution functions is used   For actual data, the difference is likely to be less than the upper bound. This form makes it clear that an upper bound on the difference between these two formulas is  For example, for N = 20, the upper bound on the difference between these two formulas is 0.05  For N = 100, the upper bound is 0.01. In practice, to large sample sizes (say N ≥ 50), these formulas are essentially equivalent.
KLASIFIKASI INTERAKSI GELOMBANG PERMUKAAN BERTIPE DUA SOLITON sutimin, Sutimin; Rusgiyono, Agus
MATEMATIKA Vol 4, No 1 (2001): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (45.963 KB)

Abstract

Pada tulisan ini diselidiki, masalah klasifikasi interaksi gelombang bertipe dua soliton Kadomtsev-Petviashvilli (KP). Disini dianalisis berdasarkan parameter interaksi dua solusi soliton baik melalui harga eksak maupun proses pelimitan. Proses pelimitan ini dilakukan untuk mengetahui resonansi diantara dua soliton. Selanjutnya  resonansi soliton ini dikaji untuk mendapatkan soliton yang baru.
ESTIMASI REGRESI WAVELET THRESHOLDING DENGAN METODE BOOTSTRAP Suparti, Suparti; Mustofa, Achmad; Rusgiyono, Agus
MATEMATIKA Vol 10, No 2 (2007): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (109.952 KB)

Abstract

Wavelet is a function that has the certainly characteristic for example, it oscillate about zero point ascillating, localized in the time and frequency domain and construct the orthogonal bases in  L2(R) space. On of the wavelet application is to estimate non parametric regression function. There are two kinds of wavelet estimator, i.e., linear and non linear wavelet estimator. The non linear wavelet estimator is called a thresholding wavelet rstimator. The application of the bootstrap methode in the thresholding wavelet function estimation is resample the wavelet coefficient of residual. The best of the thresholding wavelet estimator with bootstrap method has minimal of mean square error (MSE). The minimal MSE depend from the number of replication.  
Co-Authors Abdul Hoyi Abdul Hoyyi Agustina Sunarwatiningsih Alan Prahutama Alan Prahutama Andreanto Andreanto Anggita, Esta Dewi Anifa Anifa Anindita Nur Safira ANNISA RAHMAWATI Annisa Rahmawati Arief Rachman Hakim Aulia Putri Andana Aulia Rahmatun Nisa Bagus Arya Saputra Bayu Heryadi Wicaksono Bellina Ayu Rinni Besya Salsabilla Azani Arif Bramaditya Swarasmaradhana Budi Warsito Dede Zumrohtuliyosi Dermawanti Dermawanti Desy Tresnowati Hardi Di Asih I Maruddani Diah Safitri Diah Safitri Dian Mariana L Manullang Dini Anggreani Diyah Rahayu Ningsih Dwi Asti Rakhmawati Dwi Ispriyansti Dwi Ispriyanti Eis Kartika Dewi Ely Fitria Rifkhatussa'diyah Elyasa, Fatiya Rahmita Enggar Nur Sasongko Etik Setyowati Etik Setyowati, Etik Farisiyah Fitriani fatimah Fatimah Febriana Sulistya Pratiwi Feby Kurniawati Heru Prabowo Fitriani Fitriani Hana Hayati Hanik Malikhatin Hanik Rosyidah, Hanik Hasbi Yasin Hasbi Yasin Hildawati Hildawati Hindun Habibatul Mubaroroh Ika Chandra Nurhayati Ilham Muhammad Imam Desla Siena Inas Husna Diarsih Iwan Ali Sofwan Kevin Togos Parningotan Marpaung Listifadah Listifadah M. Afif Amirillah M. Atma Adhyaksa Marthin Nosry Mooy Maryam Jamilah An Hasibuan Maulana Taufan Permana Merlia Yustiti Moch. Abdul Mukid Moch. Abdul Mukid Muhammad Rizki Muhammad Taufan Mustafid Mustafid Mustafid Mustafid Mustofa, Achmad Nabila Chairunnisa Nor Hamidah Noveda Mulya Wibowo Novie Eriska Aritonang Nur Khofifah Nur Walidaini Octafinnanda Ummu Fairuzdhiya Puji Retnowati Puspita Kartikasari Putri Fajar Utami Rengganis Purwakinanti Revaldo Mario Ria Sulistyo Yuliani Riana Ikadianti Riszki Bella Primasari Rita Rahmawati Rita Rahmawati Rizal Yunianto Ghofar Rizky Aditya Akbar Rosita Wahyuningtyas Rukun Santoso Salsabila Rizkia Gusman Setiyowati, Eka Shella Faiz Rohmana Siti Lis Ina Atul Hidayah Sudargo Sudarno Sudarno Sudarno Sudarno Sudarno Sudarno Sudarno Sudarno Sugito - Sugito Sugito Sugito Sugito Suparti Suparti Suparti Suparti Susi Ekawati sutimin sutimin Tarno Tarno Tarno Tarno Tarno Tarno Tatik Widiharih Tatik Widiharih Tiani Wahyu Utami Tika Dhiyani Mirawati Tika Nur Resa Utami, Tika Nur Resa Titis Nur Utami Tri Ernayanti Tri Yani Elisabeth Nababan Triastuti Wuryandari Triastuti Wuryandari Tyas Ayu Prasanti Tyas Estiningrum Ulfi Nur Alifah Ungu Siwi Maharunti Uswatun Hasanah Vierga Dea Margaretha Sinaga Viliyan Indaka Ardhi Winastiti, Lugas Putranti Yogi Isna Hartanto Yuciana Wilandari Yuciana Wilandari Yuciana Wilandari