Claim Missing Document
Check
Articles

Degradasi Zat Warna Direct Red-23 dan Direct Violet Dengan Metode Ozonolisis, Fotolisis Dengan Sinar Uv dan Cahaya Matahari Menggunakan Katalis N-Doped TiO2 Safni Safni; Deby Anggraini; Diana Vanda Wellia; Khoiriah Khoiriah
Jurnal Litbang Industri Vol 5, No 2 (2015)
Publisher : Institution for Industrial Research and Standardization of Industry - Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1259.876 KB) | DOI: 10.24960/jli.v5i2.675.123-130

Abstract

Direct red-23 and Direct violet are non-biodegradable compounds containing azo component and carcinogenic. Direct red-23 and Direct violet had been degraded by ozonolysis, photolysis with UV lamp and solar irradiation methods using N-doped TiO2 catalyst. UV/Vis Spectrophotometer at wavelength 300-800 nm was used to measure the absorption of sample solution. The optimum weight of N-doped TiO2 catalyst was 20 mg. From the three methods obtained that ozonolysis method was the faster degradation process than photolysis with UV and solar irradiation. Direct red-23 and Direct violet was degraded as much as 55 and 50% within 20 minutes by ozonolysis.ABSTRAKZat warna Direct red-23 dan Direct violet merupakan senyawa non-biodegradable yang mengandung senyawa azo dan bersifat karsinogen. Direct red-23 dan Direct violet didegradasi menggunakan metode ozonolisis, fotolisis dengan sinar UV dan dengan penyinaran matahari, tanpa dan dengan katalis N-doped TiO2. Hasil penelitian diukur dengan spektrofotometer UV-Vis pada panjang gelombang 300-800 nm. Berat optimum katalis N-doped TiO2 didapatkan 20 mg. Dari ketiga metode didapatkan bahwa proses degradasi pada metode ozonolisis paling cepat dibandingkan dengan fotolisis sinar UV dan cahaya matahari. Direct red-23 dan Direct violet dapat didegradasi sebanyak 55 dan 50% dalam waktu 20 menit.
Synthesis of Porous N-doped TiO2 by Using Peroxo Sol-Gel Method for Photocatalytic Reduction of Cd(II) Diana Vanda Wellia; Dina Nofebriani; Nurul Pratiwi; Safni Safni
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.1.12347.103-112

Abstract

Porous N-doped TiO2 photocatalyst was successfully synthesized by an environmentally friendly peroxo sol-gel method using polyethylene glycol (PEG) as a templating agent. Here, the effect of PEG addition to the aqueous peroxotitanium solutions on the structure, pore properties and photocatalytic activity of the obtained photocatalysts was systematically studied. The prepared photocatalysts were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), and Brunauer-Emmett-Teller (BET). It was found that the doping of nitrogen narrows the band gap of TiO2 leading to enhance its visible-light response. The BET analysis shows that the prepared photocatalysts have a typical mesoporous structure with pore sizes of 3–6 nm. The photocatalytic activity of the prepared photocatalysts was evaluated by photocatalytic reduction of Cd(II) in an aqueous solution under visible light irradiation. The results show that porous N-doped TiO2 with the optimal PEG addition had the highest Cd(II) reduction of 85.1% after 2.5 h irradiation in neutral aqueous solution. This significant improvement in photocatalytic activity of the prepared photocatalysts was mainly attributed to the synergistic combination of N doping and porous structure, which could actively increase the catalytic active site of this photocatalysts. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Degradation of Phenol By Photolysis Using N-doped TiO2 Catalyst Safni Safni; Mechy Rezita Wahyuni; Khoiriah Khoiriah; Yulizar Yusuf
Molekul Vol 14, No 1 (2019)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (285.977 KB) | DOI: 10.20884/1.jm.2019.14.1.447

Abstract

Phenol (C6H5OH) is a common contaminant in wastewater. In certain concentrations, phenol can inhibit the activity of microorganisms and give adverse effects tohumanhealth, such as liver and kidney damage, perfect heart rate, and lower blood pressure. In this study, phenol was degraded with andwithoutN-doped TiO2under photolysis UV-light (10 Watts, λ = 365 nm) and visible-light (13 watt Philips, lux= 1400, λ = 465-640 nm)irradiation. The reductionof phenol concentrationwas measured by a UV-Vis spectrophotometer at a wavelength 200-400 nm. Some parameters such as catalyst dose, irradiation timesand type of light sources were studied. The XRD and DRS UV-Vis characterization confirmthat the nitrogen modified of titania catalyst potentially actives in visible-light. The N-doped TiO2is able to catalyze and improve the efficiency of phenol degradation in photocatalysissystem. Phenol with initialconcentration 8 mg/L was degraded by 33.89% and 30.51% without catalyst and increased to be 90.8% and 67.80%by additionof 15 mg N-doped TiO2catalyst under UV-light and visible-lightfor 210 minutes photolysis, respectively. From the results,irradiation using UV-light achieveshigherefficiency than visible-lightonphenol degradation.
Degradation of Paracetamol by Photolysis Using C-N-codoped TiO2 Vanny Yulia Safitri; Adlis Santoni; Diana Vanda Wellia; Khoiriah Khoiriah; Safni Safni
Molekul Vol 12, No 2 (2017)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (410.615 KB) | DOI: 10.20884/1.jm.2017.12.2.378

Abstract

Paracetamol is generally used as analgesic and antipyretic drugs. Contamination paracetamol in the environment can occur because of waste material disposal from production site and immediate disposal of household that cause water pollution. Paracetamol is degraded by photolysis method under irradiation 10 watt UV-light (λ=365 nm), visible-light (Philips LED 13 watt 1400 lux) and solar-light with and without addition C-N-codoped TiO2catalyst. The solution is analyzed by UV-Vis spectrophotometer at λ 200-400 nm. Optimum weight of C-N-codoped TiO2 catalyst obtained is 20 mg under UV-light photolysis. Paracetamol 4 mg/L is degraded 45.48% after 120 minutes under UV-light irradiation without catalyst, and increases to be 69.31% by using 20 mg catalyst. While degradation percentage of paracetamol is 16.96 % without catalyst, the percentage increases to be 34.29% after using 20 mg catalyst for 120 minutes photolysis under visible-light. Degradation of paracetamol by solar light achieves only 12.27% in absance of catalyst for 120 minutes irradiation, but it increases significantly until 70.39% in presence of 20 mg catalyst.
Upaya Penanggulangan Pandemi Covid-19 di Panti Asuhan Al-Falah, Padang Refinel Refinel; Emriadi Emriadi; Safni Safni; Mai Efdi; Syukri Syukri; Suryati Suryati; Marniati Salim; Imelda Imelda; Ibnu Irawan; Putri Arwanda
Warta Pengabdian Andalas Vol 27 No 2 (2020)
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM) Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jwa.27.2.113-118.2020

Abstract

The Islamic Boarding School and Orphanage Al-Falah Padang are located on Bypass Km 16, behind the West Sumatra TVRI office. Al-Falah Boarding School has 367 students, 265 of them are foster children in the Orphanage. Inadequate construction and classrooms, the students and foster children of the Islamic Boarding School and the Al-Falah Orphanage studied and lived their daily lives. The occurrence of the Covid-19 pandemic certainly affected the daily activities and learning activities of the orphanage children. Especially, the fulfillment of their basic needs. Moreover, the main problem of Covid-19 is not only about the effects by the virus on sufferers but also about its rapid transmission. Therefore, to help the crisis due to Covid-19, several lecturers and students from the Faculty of Mathematics and Natural Sciences Universitas Andalas (Unand) provided staple foods, money, masks, hand sanitizers, and disinfectants for residents of the Al-Falah Padang orphanage. It is hoped that can help the residents of the Al-Falah orphanage who certainly feel the impact of the Covid-19 pandemic.
Degradasi Pestisida Diazinon dengan Proses Fotokatalisis Sinar Matahari Menggunakan Katalis C,N-CODOPED TiO2 Khoiriah Khoiriah; Diana Vanda Wellia; Safni Safni
Jurnal Kimia dan Kemasan Vol. 41 No. 1 April 2019
Publisher : Balai Besar Kimia dan Kemasan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24817/jkk.v41i1.3834

Abstract

Diazinon merupakan salah satu pestisida organofosfat yang sangat luas penggunaannya di bidang pertanian, namun ia bersifat sangat beracun. Pada penelitian ini diazinon didegradasi secara fotokatalisis menggunakakan katalis C,N-codoped TiO2 yang aktif pada sinar matahari. Beberapa faktor yang mempengaruhi proses degradasi dipelajari seperti massa katalis, pengaruh doping pada titania, pH larutan awal, dan waktu irradiasi. Penambahan katalis C,N-codoped TiO2 mampu meningkatkan persen degradasi diazinon secara siginifikan. Diazinon dengan konsentrasi awal 18 mg/l dan volume 20 ml terdegradasi sebesar 90,75% pada kondisi optimum pH 7, 12 mg katalis C,N-codoped TiO2, selama 300 menit fotokatalisis sinar matahari. Data hasil analisis High Performance Liquid Chromatography (HPLC) menunjukkan bahwa diazinon telah berhasil didegradasi.
DEGRADASI SENYAWA PERMETRIN DENGAN MENGGUNAKAN ZEOLIT ALAM TERPILAR TiO2-ANATASE SECARA SONOLISIS Zilfa Zilfa; Hamzar Suyani; Safni Safni; Novesar Jamarun
Jurnal Ecolab Vol 5, No 1 (2011): Jurnal Ecolab
Publisher : Pusat Standardisasi Instrumen Kualitas Lingkungan Hidup Laboratorium Lingkungan (P3KLL)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20886/jklh.2011.5.1.35-43

Abstract

Permetrin merupakan golongan insektisida piretroid sintetik yang kurang toksik bagi mamalia tapi sangat toksik bagi ikan, serangga dan mikroorganisme air Penelitian tentang degradasi senyawa permetrin telah dilakukan dengan menggunakan zeolit alam terpilar TiO2-anatase secara sonolisis pada beberapa kondisi perlakuan.. Degradasi dilakukan secara sonolisis menggunakan gelombang ultrasonik dengan frekuensi 45 KHz. Sampel yang digunakan adalah permetrin 96,1%. Sedangkan zeolit alam terpilar TiO2-anatase digunakan sebagai katalis untuk membantu degradasi secara cepat dan efisien. Hasil iradiasi dianalisis dengan menggunakan spektrofotometer UV pada panjang gelombang 272 nm. Degradasi permetrin 20mg/L pada suhu 40oC dan waktu iradiasi 120 menit, tanpa penambahan zeolit alam terpilar TiO2- anatase mencapai 22,23%. Sedangkan degradasi permetrin 20 mg/L pada suhu 40oC dan waktu iradiasi 75 menit dengan penambahan 50 mg zeolit alam terpilar TiO2- anatase menghasilkan 81,10 %.
SIMULTANEOUS DETERMINATION OF CADMIUM, COPPER AND LEAD IN SEA WATER BY ADSORPTIVE STRIPPING VOLTAMMETRY IN THE PRESENCE OF CALCON AS A COMPLEXING AGENT Deswati Deswati; Hamzar Suyani; Safni Safni; Umiati Loekman; Hilfi Pardi
Indonesian Journal of Chemistry Vol 13, No 3 (2013)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (330.532 KB) | DOI: 10.22146/ijc.21282

Abstract

A selective and sensitive adsorptive stripping voltammetric (AdSV) procedure for the simultaneous determination of cadmium, copper and lead in the sea water was conducted. The aim of this research is to get optimum condition for simultaneous determination of cadmium, copper and lead. Adsorptive stripping voltammetry has been used for determination of trace amount of Cd(II), Cu(II) and Pb (II) by using calcon as a complexing agent. The parameters studied were variation of calcon concentration, pH, accumulation potential and accumulation time. In this study, the optimum conditions were calcon concentration of 0.6 mM, pH = 4.0, accumulation potential of -0.7 V and accumulation time of 80 sec. At the optimum conditions, the relative standard deviation were 8.78%, 3.12%, and 4.02% for Cd(II), Cu(II) and Pb(II) respectively for eight replicates (n = 8) measurements of 10 μg/L mixed standard solution of Cd(II), Cu(II) and Pb(II). The method was applied to the direct simultaneous determination of Cd(II), Cu(II) and Pb(II) in sea water around Bungus, Padang City. Concentration of Cd(II), Cu(II) and Pb(II) in samples were equal to 1.8 μg/L for Cd(II), 38.6 μg/L for Cu(II) and 0.7 μg/L for Pb(II) with recovery of 87.03%, 98.80%, and 95.73%, respectively.
THE METHOD DEVELOPMENT OF ANALYSIS Cd, Cu, Pb AND Zn IN SEA WATER BY ABSORPTIVE STRIPPING VOLTAMMETRY (ASV) IN THE PRESENCE OF CALCON AS COMPLEXING AGENT Deswati Deswati; Hamzar Suyani; Safni Safni
Indonesian Journal of Chemistry Vol 12, No 1 (2012)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (356.639 KB) | DOI: 10.22146/ijc.21367

Abstract

A sensitive and selective absorptive stripping voltammetric (AdSV) method to determine Cd(II), Cu(II), Pb(II) and Zn(II) in sea water is proposed. The aim of this study was to get optimum condition for the determination of Cd(II), Cu(II), Pb(II) and Zn(II). Absorptive stripping voltammetry has been used for ultra trace determination of Cd(II), Cu(II), Pb(II) and Zn(II) using calcon as a complexing agent (ligand). In this case, the optimum conditions were reached at 0.1 M KCl supporting electrolyte, concentration of 0.5 mM calcon for Cd(II), Cu(II) 0.3 mM while 0.7 mM for Pb(II) and Zn(II), pH 6 for Cu(II) and pH 7 for Cd(II), Pb(II) and Zn(II), accumulation potential -0.5 V for Cu(II) and Pb(II) and -0.6 V for Cd(II) and Zn(II) and accumulation time 70 sec for Cd(II), 90 sec for Cu(II) and Pb (II) while 50 s for Zn(II). At the optimum condition the relative standard deviations were 7.80%, 4.25%, 8.70% and 0.86% for Cd(II), Cu(II), Pb(II) and Zn(II) respectively for eight replicates (n = 8) measurements of 10 μg/L Cd(II), Cu(II), Pb(II) and Zn(II). The method was applied for the direct determination of Cd(II), Cu(II), Pb(II) and Zn(II) in sea water around Bungus, Padang City. Concentration Cd(II), Cu(II), Pb(II) and Zn(II) in sample were 13.200 μg /L for Cd(II), 17.200 μg/L for Cu(II), 0.089 μg/L for Pb(II) and 62.000 μg/L for Zn(II) with recovery of 98.68%, 97.99%, 96.17% and 99.96% for Cd(II), Cu(II), Pb(II) and Zn(II), respectively.
Photocatalytic Degradation of Commercial Diazinon Pesticide Using C,N-codoped TiO2 as Photocatalyst Khoiriah Khoiriah; Diana Vanda Wellia; Jarnuzi Gunlazuardi; Safni Safni
Indonesian Journal of Chemistry Vol 20, No 3 (2020)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (340.666 KB) | DOI: 10.22146/ijc.43982

Abstract

Diazinon (C12H21N2O3PS) is an effective pest controller that has been frequently used by farmers in agriculture. It is a nonspecific and highly toxic pesticide having low persistence in the environment and categorized as moderately hazardous class II. The degradation of commercial diazinon in aqueous solution was investigated by photocatalysis using low-energy activated C,N-codoped TiO2 as catalyst under visible-light. The influence of some parameters, i.e., catalyst concentration, the initial concentration of diazinon, initial pH of diazinon, and irradiation time on the diazinon degradation was studied. The amount of diazinon degradation was strongly influenced by all the above parameters. The results show that titania-modified enhanced the degradation percentage of diazinon, from 44.08% without a catalyst to 86.93% by adding 12 mg C,N-codoped TiO2 catalyst after 30 minutes visible-light irradiation. UV-visible spectrophotometer, HPLC, and COD analysis verified that diazinon was successfully degraded under photocatalysis visible.
Co-Authors -, Maizatisna -, Roswita -, Zulfarman Abinul Hakim Adlis Santoni Admi Admi Aldini, Tasya Amelia, Fitrah Anggraini, Deby Anna Fadhilla Arief Yandra Putra Bhayu Gita Bhernama BUSTANUL ARIFIN Chris Deviarny Deby Anggraini Deliza - Deliza, Deliza Desmiati - Deswati Deswati Dheasy Gustira Dina Nofebriani Dini Hariyati Adam Dytta Fitria Elma Fadrita Rahman Emriadi - Eno Okta Patricia Era, Yuni Fadhilla, Anna Fardila Sari Febi Rahmi Febrina Arfi Fitra Febrianti Fitrah Amelia Fitrah Amelia fitri mairizki Fitri Mairizki, Fitri Fivi Mona Bareno Gustiana, Mega Hakim, Abinul Hamzar Suryani Hamzar Suyani Harza Dipajana Umardi Hazanita Jumiaty Hazanita Jumiaty Henny Lucida Hermansyah Aziz Hermansyah Aziz Hilfi Pardi Ibnu Irawan Imelda Imelda Jarnuzi Gunlazuardi Jihanul Khaira K Khoiriah Khoiriah Khoiriah Khoiriah Khoiriah Khoiriah Khoiriah Khoiriah Khoiriah Khoiriah Khoiriah Khoiriah Khoiriah, Khoiriah Liansari, Oktanora Mai Efdi Mai Efdi Maizatisna - Maizatisna Maizatisna Marniati Salim Matlal Fajri Alif Mechy Rezita Wahyuni Mega Gustiana Muhamad Nasir Muhamad Nasir, Muhamad Neila Yenni Norman Ferdinal Novesar Jamarun Novesar Jamarun Nurul Pratiwi Oktanora Liansari Olly Norita Tetra Putri Arwanda Putri Perdana Roza Putri, Reza Audina Rahmi, Febi Rahmiana Zein Refilda Refilda Refinel - Reza Audina Putri Reza Audina Putri Roswita - Roza, Putri Perdana Sakai, T. Sakai, Tadao Salmariza Sy Sumaryati Syukur Suryati Suryati Syukri - Syukri Arief Syukri Syukri Syukri Syukri Syukri Syukri T. Sakai Tadao Sakai Tommi Hermansyah Trisna Olinovela Trisna Ollinovela Umiati Loekman Umiati Loekman Umiati Loekman Upita Septiani Vanny Yulia Safitri Vepilia Wulanda Wellia, Diana Vanda Willy Cahya Nugraha Willy Cahya Nugraha, Willy Cahya Yefrida - Yefrida Yefrida Yetria Rilda Yuli Okta Fitriyani Yulizar Yusuf Yulizar Yusuf Yuni Era Zaimi Abdullah Zaimi Abdullah Zilfa Zilfa Zulfarman - Zulfarman Zulfarman Zulkarnain Chaidir