Yusuf Bramastya Apriliyanto
Department of Chemistry, Bogor Agricultural University, Chemistry Building, Wing 1, 3rd Floor, Tanjung St., IPB Darmaga Campus, Bogor 16680, Indonesia

Published : 9 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Indonesian Journal of Chemical Studies (Indones. J. Chem. Stud.)

Novel Absorber Material Design Based on Thiazole Derivatives Using DFT/TD-DFT Calculation Methods for High-Performance Dye Sensitized Solar Cell Nurrosyid, Naufan; Fahri, Mirad; Apriliyanto, Yusuf Bramastya; Basuki, Rahmat
Indonesian Journal of Chemical Studies Vol. 1 No. 1 (2022): Indones. J. Chem. Stud., June 2022
Publisher : Indonesian Scholar Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (362.122 KB) | DOI: 10.55749/ijcs.v1i1.5

Abstract

Thiazole derivative molecules with a low energy gap have been successfully designed using the DFT/TD-DFT calculation methods. The calculations were simulated by adding varied numbers of thiophenes (1, 2, 3, and 10) and electron donating molecules of –H, -NH2, -OCH3, and –COOH in the ethanol solvent. The best thiazole derivative was the molecule constructed using a long-conjugated bridge of 10-thiophenes, the carboxyl anchoring site, and an amine addition as the electron donating molecule with an energy gap of 1.66 eV and a strong UV-Vis absorption in the red light region (673.20 nm). These designed molecules are beneficial to be applied in the equator area such as Indonesia. Further, the profound effects of the thiophene bridge in terms of the structural and energy gaps, and the variation of electron-donating molecules affected the photonic properties have been demonstrated in this paper.
Comparative Analysis of Electronic Structures Calculations: A Simple Test Case Set for Kohn-Sham Density Functional Theory and Hartree-Fock Methods Apriliyanto, Yusuf Bramastya; Nurrosyid, Naufan
Indonesian Journal of Chemical Studies Vol. 2 No. 2 (2023): Indones. J. Chem. Stud., December 2023
Publisher : Indonesian Scholar Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55749/ijcs.v2i2.33

Abstract

A comparative analysis on the performance of Kohn-Sham density functional theory (KS-DFT) and Hartree-Fock (HF) methods to obtain reliable energy and electronic properties has been performed in this study using a simple test case. It is crucial to re-emphasize the key differences between these methods to address common conceptual difficulties that occur among freshmen studying basic computational chemistry. The results suggested that the eigenvalue theorem in determining ionization potential could be well implemented in the HF but not in the KS-DFT method. The total energy difference between ionized and non-ionized species was an appropriate procedure to calculate the first ionization potential within the KS-DFT method. The HOMO-LUMO gap in the HF was larger than the gaps obtained from the KS-DFT method. Among all of the performed calculation methods, the B3LYP hybrid functional provided better total energy where the eigenvalues were located between the HF and the LDA/GGA functionals.
Reaction Mechanism in Standardized α-Cellulose Content Test: Study from Boehmeria nivea Fiber Rahmawati, Fani; Basuki, Rahmat; Fahri, Mirad; Apriliyanto, Yusuf Bramastya; Kurniadi, Tedi; Nareswari, Vania Agatha; Sandri, Azzahra; Istiqomah, Tiara
Indonesian Journal of Chemical Studies Vol. 3 No. 1 (2024): Indones. J. Chem. Stud., June 2024
Publisher : Indonesian Scholar Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55749/ijcs.v3i1.45

Abstract

In defense industry, α-cellulose is the main component of nitrocellulose propellant. However, a detailed description of the reaction mechanism of each treatment step in SNI 0444-2009 is still very scarce. This study addresses this gap by presenting the reaction mechanisms of each treatment and the symbols used in the SNI 0444-2009 procedure. The separation of lignin from α-cellulose occurred by breaking the C‒O bond linking them. This bond was broken by the ‒OH group of NaOH via a hydrolysis reaction. The reaction was initiated with the elimination of a hydrogen atom from the lignin structure by the hydroxyl ion (‒OH), and the C‒O bond was broken by a hydrolysis reaction. The breaking of this bond was indicated by the disappearance of the IR peaks at wavenumbers 1049 and 1190 cm–1 in the filtrate after extraction. The SNI 0444-2009 method for the α-cellulose content test was carried out by a redox back titration of Cr(VI) with Fe(II) from ferrous ammonium sulfate. This titration was conducted to calculate the amount of Cr(VI) ions in potassium dichromate or Cr(VI) that did not react with lignin or beta cellulose in the filtrate. Understanding the contribution and reaction mechanisms of each compound involved in the SNI 0444-2009 procedure contributed to obtaining accurate data on α-cellulose content. In this study, the calculated α-cellulose content of the flax fiber was 96.75%. Furthermore, the detailed mechanism of the redox reaction was discussed in detail in this paper.
Reflection Loss Improvement by Cerium Addition in Chitosan-Hydroxyapatite Film as Stealth Drone Candidate Putri, Riyanti; Prasojo, Agus Eko; Lazuardy, Ardyan; Anitasari, Reza; Salsabila, Fidela Aurellia; Sasongko, Nugroho Adi; Apriliyanto, Yusuf Bramastya; Hasibuan, Anggi Khairina Hanum; Ananda, Dea Dwi
Indonesian Journal of Chemical Studies Vol. 4 No. 1 (2025): Indones. J. Chem. Stud., June 2025
Publisher : Indonesian Scholar Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55749/ijcs.v4i1.53

Abstract

Radar is a detection and tracking technology commonly applied to monitor environmental conditions. Its ever-growing capabilities pose a serious challenge to military operations because they increase the risk of being detected by the enemy. On the other hand, unmanned aircraft (drones) are increasingly widespread in gathering information. However, the effectiveness of this technology can be reduced due to exposure to radar waves that allow detection. Therefore, developing coating materials that can absorb radar waves is an urgent need to increase the effectiveness of military equipment. The composites developed were derived from chitosan obtained from crustacean waste, hydroxyapatite from eggshell waste, and the rare earth metal cerium obtained from Lapindo Mud. Composites containing cerium metal (Ce) have higher radar signal absorption capabilities than samples without Ce, as evidenced by VNA measurements showing increased absorbance in the 100 MHz - 8.5 GHz frequency range. SEM tests indicate that cerium particles increase the density and homogeneity of the pore structure, with a size range of 17–24 µm. FTIR characterization revealed that Ce was physically bound to the chitosan-HAp composite. Mechanically, the composite with Ce had a maximum tensile stress of 9.512 MPa and a strain of 9.512%, while without the addition of Ce, a stress of 9.529 MPa and a strain of 25.512% was obtained. These findings indicate that integrating rare earth metals in chitosan-HAp composites can improve the material's capability to absorb radar waves, thus having broad prospects for applications in defence technology.