Claim Missing Document
Check
Articles

Implementation of Ant Colony Optimization in Obesity Level Classification Using Random Forest Wardana, Muhammad Difha; Budiman, Irwan; Indriani, Fatma; Nugrahadi, Dodon Turianto; Saputro, Setyo Wahyu; Rozaq, Hasri Akbar Awal; Yıldız, Oktay
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 5 (2025): JUTIF Volume 6, Number 5, Oktober 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.5.4696

Abstract

Obesity is a pressing global health issue characterized by excessive body fat accumulation and associated risks of chronic diseases. This study investigates the integration of Ant Colony Optimization (ACO) for feature selection in obesity-level classification using Random Forests. Results demonstrate that feature selection significantly improves classification accuracy, rising from 94.49% to 96.17% when using ten features selected by ACO. Despite limitations, such as challenges in tuning parameters like alpha (α), beta (β), and evaporation rate in ACO techniques, the study provides valuable insights into developing a more efficient obesity classification system. The proposed approach outperforms other algorithms, including KNN (78.98%), CNN (82.00%), Decision Tree (94.00%), and MLP (95.06%), emphasizing the importance of feature selection methods like ACO in enhancing model performance. This research addresses a critical gap in intelligent healthcare systems by providing the first comprehensive study of ACO-based feature selection specifically for obesity classification, contributing significantly to medical informatics and computer science. The findings have immediate practical implications for developing automated diagnostic tools that can assist healthcare professionals in early obesity detection and intervention, potentially reducing healthcare costs through improved diagnostic efficiency and supporting digital health transformation in clinical settings. Furthermore, the study highlights the broader applicability of ACO in various classification tasks, suggesting that similar techniques could be used to address other complex health issues, ultimately improving diagnostic accuracy and patient outcomes.
Evaluation of User Experience in the Banjarbaru Disdukcapil Public Service Application Using User Experience Questionnaire and System Usability Scale Martalisa, Asri; Wahyu Saputro, Setyo; Turianto Nugrahadi, Dodon; Abadi, Friska; Budiman, Irwan
Scientific Journal of Informatics Vol. 11 No. 4: November 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i4.13780

Abstract

Purpose: Dukcapil Banjarbaru is an online-based government agency application used for various public services. According to the complaint report from Disdukcapil Banjarbaru, several users have reported similar problems and difficulties. The application has received a rating of 3.3 stars from approximately 24.000 users on the Google Play Store. Therefore, researchers conducted a user experience analysis using the UEQ methods and a usability evaluation using the SUS methods. Methods: This research analyzes user experience in applications using the UEQ to identify issues faced by users and evaluate usability through the System Usability Scale. The UEQ method is chosen for its efficiency and simplicity in assessing user experience within an application. The SUS method is employed because it is an effective approach for obtaining reliable statistical data and generating clear and accurate scores. Result: The UEQ benchmark results show that the scales for Attractiveness (1.59), Efficiency (1.68), Accuracy (1.66), and Stimulation (1.54) are categorized as "Good." The scales for clarity (1.37) and novelty (0.80) are classified as "Above Average." Meanwhile, the SUS score of 65 positions the application within the "acceptable" category for the acceptability range, the "D" category on the grade scale, and the "OK" category for adjective ratings. This indicates that while the Banjarbaru Dukcapil application has good usability, it requires improvements based on the total SUS score, which reveals several critical areas with scores below the average (258.4). Novelty: In this research, solutions for improvements are provided to Disdukcapil based on each aspect to improve the quality of the application, thereby offering better services to users.
Enhancing Natural Disaster Monitoring: A Deep Learning Approach to Social Media Analysis Using Indonesian BERT Variants Fitriani, Karlina Elreine; Faisal, Mohammad Reza; Mazdadi, Muhammad Itqan; Indriani, Fatma; Nugrahadi, Dodon Turianto; Prastya, Septyan Eka
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 7 No. 1 (2025): February
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/t158qq37

Abstract

Social media has become a primary source of real-time information that can be leveraged by artificial intelligence to identify relevant messages, thereby enhancing disaster management. The rapid dissemination of disaster-related information through social media allows authorities to respond to emergencies more effectively. However, filtering and accurately categorizing these messages remains a challenge due to the vast amount of unstructured data that must be processed efficiently. This study compares the performance of IndoRoBERTa, IndoRoBERTa MLM, IndoDistilBERT, and IndoDistilBERT MLM in classifying social media messages about natural disasters into three categories: eyewitness, non-eyewitness, and don’t know. Additionally, this study analyzes the impact of batch size on model performance to determine the optimal batch size for each type of disaster dataset. The dataset used in this study consists of 1000 messages per category related to natural disasters in the Indonesian language, ensuring sufficient data diversity. The results show that IndoDistilBERT achieved the highest accuracy of 81.22%, followed by IndoDistilBERT MLM at 80.83%, IndoRoBERTa at 79.17%, and IndoRoBERTa MLM at 78.72%. Compared to previous studies, this study demonstrates a significant improvement in classification accuracy and model efficiency, making it more reliable for real-world disaster monitoring. Pre-training with MLM enhances IndoRoBERTa’s sensitivity and IndoDistilBERT’s specificity, allowing both models to better understand context and optimize classification results. Additionally, this study identifies the optimal batch sizes for each disaster dataset: 32 for floods, 128 for earthquakes, and 256 for forest fires, contributing to improved model performance. These findings confirm that this approach significantly improves classification accuracy, supporting the development of machine learning-based early warning systems for disaster management. This study highlights the potential for further model optimization to enhance real-time disaster response and improve public safety measures more effectively and efficiently.
Dimensionality Reduction Using Principal Component Analysis and Feature Selection Using Genetic Algorithm with Support Vector Machine for Microarray Data Classification Kartini, Dwi; Badali, Rahmat Amin; Muliadi, Muliadi; Nugrahadi, Dodon Turianto; Indriani, Fatma; Saputro, Setyo Wahyu
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 7 No. 1 (2025): February
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/mr7x9713

Abstract

DNA microarray is used to analyze gene expression on a large scale simultaneously and plays a critical role in cancer detection. The creation of a DNA microarray starts with RNA isolation from the sample, which is then converted into cDNA and scanned to generate gene expression data. However, the data generated through this process is highly dimensional, which can affect the performance of predictive models for cancer detection. Therefore, dimensionality reduction is required to reduce data complexity. This study aims to analyze the impact of applying Principal Component Analysis (PCA) for dimensionality reduction, Genetic Algorithm (GA) for feature selection, and their combination on microarray data classification using Support Vector Machine (SVM). The datasets used are microarray datasets, including breast cancer, ovarian cancer, and leukemia. The research methodology involves preprocessing, PCA for dimensionality reduction, GA for feature selection, data splitting, SVM classification, and evaluation. Based on the results, the application of PCA dimensionality reduction combined with GA feature selection and SVM classification achieved the best performance compared to other classifications. For the breast cancer dataset, the highest accuracy was 73.33%, recall 0.74, precision 0.75, and F1 score 0.73. For the ovarian cancer dataset, the highest accuracy was 98.68%, recall 0.98, precision 0.99, and F1 score 0.99. For the leukemia dataset, the highest accuracy was 95.45%, recall 0.94, precision 0.97, and F1 score 0.95. It can be concluded that combining PCA for dimensionality reduction with GA for feature selection in microarray classification can simplify the data and improve the accuracy of the SVM classification model. The implications of this study emphasize the effectiveness of applying PCA and GA methods in enhancing the classification performance of microarray data.
Effectiveness of SMOTE in Enhancing Adult Autism Spectrum Disorder Diagnosis Predictive Performance With Missforest Imputation And Random Forest Musyaffa, Muhammad Hafizh; Saragih, Triando Hamonangan; Nugrahadi, Dodon Turianto; Kartini, Dwi; Farmadi, Andi
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 7 No. 2 (2025): May
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v7i2.66

Abstract

Autism Spectrum Disorder (ASD), originally described by Leo Kanner in 1943, is a complex developmental condition that manifests through social, emotional, and behavioral challenges, often including speech delays and difficulties in interpersonal interactions. Despite significant advancements in diagnostic criteria over the years, accurate diagnosis of ASD in adults remains challenging due to limited access to comprehensive datasets and inherent methodological constraints. The Autism Screening Adult dataset used in this study exemplifies these issues, as it contains missing values and exhibits a marked class imbalance, both of which can adversely affect model performance. To address these challenges, we proposed a framework that integrates Random Forest classification with MissForest imputation and the Synthetic Minority Over-sampling Technique (SMOTE). MissForest effectively imputes missing data by employing an iterative random forest approach that preserves the underlying structure of the data without relying on strict parametric assumptions. Meanwhile, SMOTE generates synthetic samples for the minority class, thereby balancing the dataset and reducing prediction bias. Experimental evaluation through 10-Fold Cross Validation demonstrated that the application of SMOTE significantly enhanced model performance. Notably, the overall accuracy improved from 70.17% to 79.32%, and the AUC-ROC increased from 47.13% to 85.84%, indicating a robust improvement in the model’s ability to distinguish between positive and negative cases. These results underscore the critical importance of addressing data imbalance and missing values in predictive modeling for ASD. The promising outcomes of this study provide a solid foundation for developing more reliable diagnostic tools for adult ASD, and future research may further refine feature selection and incorporate additional data sources to optimize performance even further.
Application of Solar-Based Light Lumen to Papuyu Fish Farmers in Penggalaman Village, West Martapura: Indonesia Dwi Kartini; Nugrahadi, Dodon Turianto; Ramadhani, Rahmat
Jurnal Abdimas Madani dan Lestari (JAMALI) Volume 06, Issue 01, Maret 2024
Publisher : UII

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20885/jamali.vol6.iss1.art7

Abstract

Penggalaman Village, West Martapura, Banjar Regency, South Kalimantan is one of the papuyu fisheries development areas. The location of the village is very strategic, located along the irrigation flow of Penggalaman Village and has very sufficient potential in the fisheries business for fish farmers. Villagers have carried out papuyu fish seed cultivation activities that have ponds for artificial fertilization of papuyu fish, papuyu fish egg hatching ponds and enlargement ponds but have not implemented lighting in the process of fish farming activities. This is because it requires a lot of electrical energy and costs a lot for these activities. The purpose of this service activity is to introduce and apply solar-based electrical energy sources for fish farmers in improving fisheries businesses as an alternative to electrical energy. This tool is equipped with yellow and white lumens, controller, battery, aerator and solar panel and automatic control system. The application of solar-based lumens will provide a technological solution to the lighting of papuyu fingerlings and enlargement ponds for papuyu fish farmers in Penggalaman Village. Yellow and white lumens are able to provide lighting and reduce predator attacks at night. The results of the application of this technology are the fulfillment of electrical energy by applying solar-based lumens to papuyu fish nurseries and increasing the lighting of fish nurseries and papuyu fish enlargement by approximately 80%, and reducing night predator attacks by 70%.
Characteristics ransomware stop/djvu remk and erqw variants with static-dinamic analysis Nugrahadi, Dodon Turianto; Abadi, Friska; Herteno, Rudy; Muliadi, Muliadi; Alkaff, Muhammad; Alfando, Muhammad Alvin
Computer Science and Information Technologies Vol 6, No 3: November 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/csit.v6i3.p283-293

Abstract

Ransomware has developed into various new variants every year. One type of ransomware is STOP/DJVU, containing more than 240+ variants. This research to determine changes in differences characteristics and impact between ransomware variants STOP/DJVU remk, which is a variant from 2020, and the erqw variant from 2023, through a mixed-method research approach. Observation, simulation using mixing static and dynamic malware analysis methods. Both variants are from the Malware Bazaar site. The total characteristics based on dynamic analysis, the remk variant has 177, and the erqw variant has 190, which increased by 1.8%. The total characteristics based on static analysis, the remk variants have 586, and the erqw variants have 736, which increased by 5.7%. All characteristics from remk to erqw increasing in dynamic analysis, except the number of payloads that decreased about 20%. In static analysis, all characteristics from remk to erqw increase except the number of sections decreased about 1.5%. It can be the affected CPU performance, because the remk variant affects performance by increasing CPU work by 3.74%, while the erqw variant affects performance by reducing CPU work by 1.18%, both compared with normal CPU. which will affect the ransomware's destructive work and require changes in its handling.
Functional Evaluation of the Logia Dashboard Using Boundary Value Testing and Cause-Effect Graph Techniques Ramadhan, Muhammad Rizky Aulia; Abadi, Friska; Nugrahadi, Dodon Turianto; Saputro, Setyo Wahyu; Herteno, Rudy
Telematika Vol 18, No 2: August (2025)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35671/telematika.v18i2.3121

Abstract

The Logia Dashboard is a web-based information system used to manage rehabilitation plant data on post-mining land. As an alpha-stage system, Logia requires thorough functional and performance evaluation to ensure that all input validations, logical processes, and system responses operate correctly before wider implementation. This study aims to evaluate the functional reliability and performance of the Logia Dashboard by applying a combined approach of Boundary Value Testing (BVT) and Cause-Effect Graph (CEG) techniques, supported by performance testing using Google Lighthouse. The research design adopts a black-box testing approach. BVT is applied to validate input boundaries on critical features, including login, data editing, QR code generation, and account creation. Meanwhile, CEG is used to model logical relationships between input conditions and system outputs to generate systematic test cases. A total of 39 optimized functional test cases were executed in a controlled local environment. Performance testing was conducted using Lighthouse by measuring key metrics such as First Contentful Paint (FCP), Largest Contentful Paint (LCP), Total Blocking Time (TBT), and Cumulative Layout Shift (CLS). The functional testing results show that 37 out of 39 test cases passed, yielding a success rate of 94.87%. Two failed cases were identified in the login feature, indicating weaknesses in input validation feedback. Performance testing produced an average Lighthouse score of 97, demonstrating that the system has excellent load speed and interface stability, although minor layout instability was detected on certain pages. These results indicate that the combined application of BVT and CEG is effective for detecting boundary-related and logical input errors in alpha-stage web systems. The findings also provide concrete recommendations for improving login validation and interface stability, supporting further development of the Logia Dashboard toward a more reliable and robust system for post-mining land management.
Early Fusion of CNN Features for Multimodal Biometric Authentication from ECG and Fingerprint Using MLP, LSTM, GCN, and GAT Priyatama, Muhammad Abdhi; Nugrahadi, Dodon Turianto; Budiman, Irwan; Farmadi, Andi; Faisal, Mohammad Reza; Purnama, Bedy; Adi, Puput Dani Prasetyo; Ngo, Luu Duc
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 6 (2025): JUTIF Volume 6, Number 6, Desember 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.6.5299

Abstract

Traditional authentication methods such as PINs and passwords remain vulnerable to theft and hacking, demanding more secure alternatives. Biometric approaches address these weaknesses, yet unimodal systems like fingerprints or facial recognition are still prone to spoofing and environmental disturbances. This study aims to enhance biometric reliability through a multimodal framework integrating electrocardiogram (ECG) signals and fingerprint images. Fingerprint features were extracted using three deep convolutional networks—VGG16, ResNet50, and DenseNet121—while ECG signals were segmented around the first R-peak to produce feature vectors of varying dimensions. Both modalities were fused at the feature level using early fusion and classified with four deep learning algorithms: Multilayer Perceptron (MLP), Long Short-Term Memory (LSTM), Graph Convolutional Network (GCN), and Graph Attention Network (GAT). Experimental results demonstrated that the combination of VGG16 + LSTM and ResNet50 + LSTM achieved the highest identification accuracy of 98.75 %, while DenseNet121 + MLP yielded comparable performance. MLP and LSTM consistently outperformed GCN and GAT, confirming the suitability of sequential and feed-forward models for fused feature embeddings. By employing R-peak-based ECG segmentation and CNN-driven fingerprint features, the proposed system significantly improves classification stability and robustness. This multimodal biometric design strengthens protection against spoofing and impersonation, providing a scalable and secure authentication solution for high-security applications such as digital payments, healthcare, and IoT devices.
Comparative Performance Evaluation of Linear, Bagging, and Boosting Models Using BorutaSHAP for Software Defect Prediction on NASA MDP Datasets Kartika, Najla Putri; Herteno, Rudy; Budiman, Irwan; Nugrahadi, Dodon Turianto; Abadi, Friska; Ahmad, Umar Ali; Faisal, Mohammad Reza
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 6 (2025): JUTIF Volume 6, Number 6, Desember 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.6.5393

Abstract

Software defect prediction aims to identify potentially defective modules early on in order to improve software reliability and reduce maintenance costs. However, challenges such as high feature dimensions, irrelevant metrics, and class imbalance often reduce the performance of prediction models. This research aims to compare the performance of three classification model groups—linear, bagging, and boosting—combined with the BorutaSHAP feature selection method to improve prediction stability and interpretability. A total of twelve datasets from the NASA Metrics Data Program (MDP) were used as test references. The research stages included data preprocessing, class balancing using the Synthetic Minority Oversampling Technique (SMOTE), feature selection with BorutaSHAP, and model training using five algorithms, namely Logistic Regression, Linear SVC, Random Forest, Extra Trees, and XGBoost. The evaluation was conducted with Stratified 5-Fold Cross-Validation using the F1-score and Area Under the Curve (AUC) metrics. The experimental results showed that tree-based ensemble models provided the most consistent performance, with Extra Trees recording the highest average AUC of 0.794 ± 0.05, followed by Random Forest (0.783 ± 0.06). The XGBoost model provided the best results on the PC4 dataset (AUC = 0.937 ± 0.008), demonstrating its ability to handle complex data patterns. These findings prove that BorutaSHAP is effective in filtering relevant features, improving classification reliability, and strengthening transparency and interpretability in the Explainable Artificial Intelligence (XAI) framework for software quality improvement.
Co-Authors Abadi, Friska Abdul Gafur Adi Mu'Ammar, Rifqi Adi, Puput Dani Prasetyo Adi, Puput Dani Prasetyo Ahmad Rusadi Ahmad Rusadi Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Aida, Nor Aji Triwerdaya Alfando, Muhammad Alvin Andi Farmadi Andi Farmadi Andi Farmadi Andi Farmadi Ando Hamonangan Saragih Apriana, Susi Ardiansyah Sukma Wijaya Arfan Eko Fahrudin Arifin Hidayat Azwari, Ayu Riana Sari Azwari, Ayu RianaSari Bachtiar, Adam Mukharil Badali, Rahmat Amin Bahriddin Abapihi Bedy Purnama Cahyadi, Rinova Firman Dike Bayu Magfira, Dike Bayu Djordi Hadibaya Dwi Kartini Dwi Kartini Dwi Kartini, Dwi Emy Iryanie, Emy Faisal Murtadho Faisal, Mohammad Reza Fajrin Azwary Fatma Indriani Fhadilla Muhammad Fitra Ahya Mubarok Fitria Agustina fitria Fitriani, Karlina Elreine Fitrinadi Friska Abadi Gunawan Gunawan Gunawan Gunawan Halim, Kevin Yudhaprawira Hariyady, Hariyady Herteno, Rudy Herteno, Rudy Heru Kartika Candra, Heru Kartika Huynh, Phuoc-Hai Ichsan Ridwan Indah Ayu Septriyaningrum Irwan Budiman Irwan Budiman Irwan Budiman Ismail Didit Samudro Julius Tunggono Jumadi Mabe Parenreng Junaidi, Ridha Fahmi Kartika, Najla Putri Keswani, Ryan Rhiveldi Kevin Yudhaprawira Halim Liling Triyasmono M Kevin Warendra M. Apriannur Martalisa, Asri Maulidha, Khusnul Rahmi Mera Kartika Delimayanti Miftahul Muhaemen Muhamad Ihsanul Qamil Muhammad Alkaff Muhammad Anshari Muhammad Haekal Muhammad Hasan Muhammad Irfan Saputra Muhammad Itqan Masdadi Muhammad Itqan Mazdadi Muhammad Janawi Muhammad Khairin Nahwan Muhammad Mirza Hafiz Yudianto Muhammad Nazar Gunawan Muhammad Reza Faisal, Muhammad Reza Muhammad Rofiq Muhammad Sholih Afif Muhammad Solih Afif Muliadi Muliadi Muliadi MULIADI -, MULIADI Muliadi Aziz Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi, M Musyaffa, Muhammad Hafizh Nafis Satul Khasanah Nahdhatuzzahra Nahdhatuzzahra Ngo, Luu Duc Noor Hidayah Nursyifa Azizah Ori Minarto Padhilah, Muhammad Pirjatullah Pirjatullah Pirjatullah Prastya, Septyan Eka Priyatama, Muhammad Abdhi Radityo Adi Nugroho Rahayu, Fenny Winda Rahmad Ubaidillah Rahmat Ramadhani, Rahmat Ramadhan, Muhammad Rizky Aulia Riadi, Putri Agustina Rifki Izdihar Oktvian Abas Pullah Rifki Riza Susanto Banner Rizal, Muhammad Nur Rizki Amelia Rizki, M. Alfi Rozaq, Hasri Akbar Awal Rudy Herteno Rudy Herteno Saman Abdurrahman Saputro, Setyo Wahyu Saputro, Setyo Wahyu Saputro, Setyo Wahyu Saragih, Triando Hamonangan Satou, Kenji Selvia Indah Liany Abdie Setyo Wahyu Saputro sholih Afif Siti Napi'ah Soesanto, Oni Sri Cahyo Wahyono Sri Rahayu Sri Redjeki Sri Redjeki Totok Wianto Totok Wiyanto Tri Mulyani Triando Hamonangan Saragih Umar Ali Ahmad Utomo, Edy Setyo Wahyu Dwi Styadi Wahyu Saputro, Setyo Wardana, Muhammad Difha Winda Agustina Yabani, Midfai Yanche Kurniawan Mangalik YILDIZ, Oktay Yudha Sulistiyo Wibowo Zamzam, Yra Fatria