Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Bigram feature extraction and conditional random fields model to improve text classification clinical trial document Jasmir Jasmir; Siti Nurmaini; Reza Firsandaya Malik; Bambang Tutuko
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.18357

Abstract

In the field of health and medicine, there is a very important term known as clinical trials. Clinical trials are a type of activity that studies how the safest way to treat patients is. These clinical trials are usually written in unstructured free text which requires translation from a computer. The aim of this paper is to classify the texts of cancer clinical trial documents consisting of unstructured free texts taken from cancer clinical trial protocols. The proposed algorithm is conditional random Fields and bigram features. A new classification model from the cancer clinical trial document text is proposed to compete with other methods in terms of precision, recall, and f-1 score. The results of this study are better than the previous results, namely 88.07 precision, 88.05 recall and f-1 score 88.06.
A New Classification Technique in Mobile Robot Navigation Siti Nurmaini; Bambang Tutuko
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 9, No 3: December 2011
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v9i3.736

Abstract

This paper presents a novel pattern recognition algorithm that use weightless neural network (WNNs) technique.This technique plays a role of situation classifier to judge the situation around the mobile robot environment and makes control decision in mobile robot navigation. The WNNs technique is choosen due to significant advantages over conventional neural network, such as they can be easily implemented in hardware using standard RAM, faster in training phase and work with small resources. Using a simple classification algorithm, the similar data will be grouped with each other and it will be possible to attach similar data classes to specific local areas in the mobile robot environment. This strategy is demonstrated in simple mobile robot powered by low cost microcontrollers with 512 bytes of RAM and low cost sensors. Experimental result shows, when number of neuron increases the average environmental recognition ratehas risen from 87.6% to 98.5%.The WNNs technique allows the mobile robot to recognize many and different environmental patterns and avoid obstacles in real time. Moreover, by using proposed WNNstechnique mobile robot has successfully reached the goal in dynamic environment compare to fuzzy logic technique and logic function, capable of dealing with uncertainty in sensor reading, achieving good performance in performing control actions with 0.56% error rate in mobile robot speed.
Improving Posture Accuracy of Non-Holonomic Mobile Robot System with Variable Universe of Discourse Siti Nurmaini; Bambang Tutuko; Kemala Dewi; Velia Yuliza; Tresna Dewi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 15, No 3: September 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v15i3.6078

Abstract

This paper presents a method to decrease imprecision and inaccuracy that have the tendency to influence the posture of non-holonomic mobile by using the adaptive tuning of universe of discourse. As such, the primary objective of the study is to force the posture error of x(t), y(t) and θ(t) towards zero. Hence, for each step of tuning the fuzzy domain, about 20% of imprecision and inaccuracy had been added automatically into the variable universe fuzzy, while the control input was bound via scaling gain. Furthermore, the experimental results showed that the tuning of universe fuzzy parameters could increase the performance of the system from the aspects of response time and error for steady state through better control of inaccuracy. Besides, the domains of universe fuzzy input [-4,4] and output [0,6] exhibited good performance in inching towards zero values as the steady state error was about 1% for x(t) position, 0.02% for y(t) position, and 0.16% for θ(t) orientation, whereas the posture error in the given reference was about 0.0002%.
Unidirectional-bidirectional recurrent networks for cardiac disorders classification Annisa Darmawahyuni; Siti Nurmaini; Muhammad Naufal Rachmatullah; Firdaus Firdaus; Bambang Tutuko
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.18876

Abstract

The deep learning approach of supervised recurrent network classifiers model, i.e., recurrent neural networks (RNNs), long short-term memory (LSTM), and gated recurrent units (GRUs) are used in this study. The unidirectional and bidirectional for each cardiac disorder (CDs) class is also compared. Comparing both phases is needed to figure out the optimum phase and the best model performance for ECG using the Physionet dataset to classify five classes of CDs with 15 leads ECG signals. The result shows that the bidirectional RNNs method produces better results than the unidirectional method. In contrast to RNNs, the unidirectional LSTM and GRU outperformed the bidirectional phase. The best recurrent network classifier performance is unidirectional GRU with average accuracy, sensitivity, specificity, precision, and F1-score of 98.50%, 95.54%, 98.42%, 89.93% 92.31%, respectively. Overall, deep learning is a promising improved method for ECG classification.