Claim Missing Document
Check
Articles

Found 4 Documents
Search

KOMPUTASI GEOGRAPHICALLY AND TEMPORALLY WEIGHTED REGRESSION BERBASIS GRAPHICAL USER INTERFACE (GUI) Yasin, Hasbi; Warsito, Budi; Ispriyanti, Dwi; Suparti, Suparti; Hakim, Arief Rachman
Prosiding Seminar Nasional Venue Artikulasi-Riset, Inovasi, Resonansi-Teori, dan Aplikasi Statistika (VARIANSI) Vol 1 (2018)
Publisher : Program Studi Statistika, FMIPA, Universitas Negeri Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1575.013 KB)

Abstract

Geographically and Temporally Weighted Regression (GTWR) merupakan salah satu metode spatio temporal yang dikembangkan pada model regresi linier. Pengembangan dilakukan dengan menambahkan unsur spasial yang direpresentasikan dengan lokasi geografis dan penambahan unsur temporal yang diwakili oleh waktu pengamatan.  Dengan metode GTWR akan diperoleh parameter bersifat lokal menurut lokasi dan waktu pengamatan. Perkembangan teknologi telah memunculkan berbagai alat bantu dalam proses analisis data. Salah satunya berkembangnya software statistik yang berbasis antarmuka berupa Graphical User Interface (GUI) untuk memudahkan pengguna. Hasil penelitian ini adalah sebuah sistem komputasi untuk proses analisis data menggunakan model GTWR baik estimasi parameter maupun inferensinya. Hasil penelitian menunjukkan bahwa dengan dengan menggunakan GUI GTWR pengguna akan sangat dimudahkan dalam proses analisis data spasial menggunakan metode GTWR. Hasil penelitian menunjukkan bahwa model spatio temporal GTWR lebih baik digunakan untuk pemodelan Indeks Standar Pencemar Udara (ISPU) dengan pembobot Bisquare karena mempunyai nilai R2 terbesar dengan MSE dan AIC yang terkecil bila dibandingkan dengan pembobot yang lain. Kata kunci :  Antar Muka Grafis, ISPU, GTWR, Spasial, Temporal.
ANALISIS DATA INFLASI INDONESIA MENGGUNAKAN METODE FOURIER DAN WAVELET MULTISCALE AUTOREGRESIVE Suparti, Suparti; Santoso, Rukun; Prahutama, Alan; Yasin, Hasbi; Devi, Alvita Rachma
Prosiding Seminar Nasional Venue Artikulasi-Riset, Inovasi, Resonansi-Teori, dan Aplikasi Statistika (VARIANSI) Vol 1 (2018)
Publisher : Program Studi Statistika, FMIPA, Universitas Negeri Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (884.754 KB)

Abstract

Analisis regresi merupakan metode statistika untuk mengetahui hubungan antara variabel prediktor dan variabel respon. Pendekatan regresi dapat dilakukan dengan  pendekatan parametrik dan nonparametrik. Pendekatan parametrik ketat dengan asumsi dan harus dipenuhi untuk mendapatkan model yang baik. Sementara pendekatan nonparametrik tidak ketat dengan asumsi karena metode tersebut didasarkan pada pendekatan kurva yang tidak diketahui bentuknya. Pendekatan nonparametrik dapat dilakukan dengan beberapa pendekatan diantaranya metode Fourier dan Wavelet. Metode Fourier merupakan metode yang didasarkan pada deret cosinus atau sinus. Metode Fourier sangat sesuai untuk data yang mengalami pola berulang atau stasioner. Sedangkan pada pemodelan wavelet tidak hanya terbatas pada data berulang atau stasioner saja, akan tetapi juga mampu memodelkan data yang tidak stasioner. Pada penelitian ini dimodelkan nilai Inflasi di Indonesia dari Januari 2007 sampai Agustus 2017.  Variabel responnya adalah nilai inflasi, sedangkan variabel prediktornya adalah waktu. Metode Fourier dengan K=100 menghasilkan MSE sebesar 0,846216 dan R2 sebesar 80,12%. Model Wavelet menggunakan Multiscale Autoregresive dengan filter Haar, J=4 dan Aj = 2  mempunyai MSE sebesar 0,312 dengan R2  sebesar  96,91%.  Pada model Fourier dengan K=100 diperlukan parameter sebanyak 102 buah sedangkan model wavelet dengan J=4 dan Aj = 2 hanya diperlukan parameter sebanyak 10 buah. Jadi model wavelet sangat efisien dengan kinerja yang lebih bagus dibandingkan dengan model Fourier. Kata Kunci: Inflasi, nonparametrik, Fourier, Wavelet, MSE
SISTEM INFORMASI POTENSI KREDIT MACET BERBASIS APLIKASI CREDIT SCORING-SUPPORT VECTOR MACHINE (CSSVM) Yasin, Hasbi; Hakim, Arief Rachman; Hoyyi, Abdul
Prosiding Seminar Nasional Venue Artikulasi-Riset, Inovasi, Resonansi-Teori, dan Aplikasi Statistika (VARIANSI) Vol 2 (2020)
Publisher : Program Studi Statistika, FMIPA, Universitas Negeri Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Asset utama dari sebuah bank adalah besarnya dan kredit yang dikelola bank, karena kredit juga merupakan konstributor yang paling signifikan terhadap pendapatan sebuah institusi perbankan. Oleh karena itu, deteksi dini terhadap munculnya kredit macet sangat diperlukan. Salah satunya adalah dengan menggunakan sistem informasi potensi kredit macet yang dibangun berdasarkan model Support Vector Machine (SVM). SVM merupakan salah satu metode klasifikasi yang bersifat non linier dan non parametrik, sehingga tidak diperlukan adanya asumsi yang membatasi terhadap distribusi data tertentu. Dalam penelitian ini, potensi kredit macet dilihat dari lima indikator, yaitu: nominal kredit, saldo rekening, suku bunga, jangka waktu kredit, dan lama menjadi nasabah sebuah bank. Berdasarkan beberapa skenario spesifikasi model SVM yang digunakan, diperoleh tingkat akurasi model SVM mencapai 95% untuk data training, dan 90% untuk data testing. Dengan demikian, dapat dikatakan bahwa sistem ini dapat dijadikan sebagai alat untuk mendeteksi adanya potensi kredit macet dari sebuah aplikasi kredit dengan melihat indikator yang digunakan. Kata kunci: Credit Scoring, Sistem Informasi, SVM.
KOMPUTASI MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE – RADIAL BASIS FUNCTION NETWORK (GSTAR-RBFN) Warsito, Budi; Yasin, Hasbi; Hakim, Arief Rachman
Prosiding Seminar Nasional Venue Artikulasi-Riset, Inovasi, Resonansi-Teori, dan Aplikasi Statistika (VARIANSI) Vol 2 (2020)
Publisher : Program Studi Statistika, FMIPA, Universitas Negeri Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Generalized Space Time Autoregressive (GSTAR), merupakan salah satu model yang digunakan untuk memodelkan data time series yang diamati pada beberapa lokasi. Radial Basis Function Neural Network (RBFN) adalah salah satu model jaringan syaraf tiruan yang dapat digunakan untuk pemodelan data time series. Pada penelitian ini akan dibangun sebuah model spatio temporal yang menggabungkan antara model GSTAR dengan model RBFN. Model GSTAR berperan dalam penentuan lag input pada model RBFN. Model ini dinamakan dengan GSTAR-RBFN. Untuk memudahkan proses pengolahan data telah disusun sebuah software statistik yang berbasis antarmuka berupa Graphical User Interface (GUI). Dalam penelitian ini, model GSTAR-RBFN diaplikasikan pada data tinggi gelombang laut di perairan Semarang. Hasil penelitian menunjukkan bahwa dengan menggunakan GUI GSTAR-RBFN, pengolahan data spasio temporal dapat dilakukan dengan sangat mudah.  Kata kunci:  GUI, GSTAR, RBFN, Tinggi Gelombang
Co-Authors Abdul Hoyyi Achmad Choiruddin Adi Waridi Basyiruddin Adi Waridi Basyirudin Arifin Agus Rusgiyono Ajeng Arum Sari Alan Prahutama Alvita Rachma Devi Amanda Lucky Berlian Andreanto Andreanto Anggun Perdana Aji Pangesti Arief Rachman Hakim Arief Rachman Hakim Arumningtyas, Felinda Baluk, Andreas Pedo Bens Pardamean Budi Warsito Budi Warsito Danang Chandra Pradana, Danang Chandra Dani Al Mahkya Darwanto Darwanto Devi Wijayanti Dewi Setya Kusumawardani Dharmawan, Bagus Dwiky Dhea Kurnia Mubyarjati Di Asih I Maruddani Di Asih I Maruddani Di Asih I Maruddani Diah Safitri Dwi Hasti Ratnasari Dwi Ispriyanti Eko Siswanto Fadhilla Atansa Tamardina Fiqria Devi Ariyani Gera Rozalia Hanien Nia H Shega Hari Susanta Nugraha Hendrian, Jody Hidayatul Musyarofah Hindun Habibatul Mubaroroh Ika Chandra Nurhayati Inas Hasimah Inayati, Syarifah Indah Suryani Innosensia Adella Intan Monica Hanmastiana Isna Wulandari Ispriyansti, Dwi Johanes Roisa Prabowo Kadi Mey Ismail Kurniawan, Isma Dwi Lutfia Septiningrum Maghfiroh Hadadiah Mukrom Maria Odelia Mas'ad, Mas'ad Maulana Taufan Permana Mega Fitria Andriyani Meilia Kusumawardani, Meilia Moch. Abdul Mukid Mochammad Iffan Zulfiandri MUHAMMAD HARIS Muhammad Mujahid Muhammad Tahmid Muryanto Muryanto Muryanto, Muryanto Mustafid Mustafid Mutiara, Dinar Nova Delvia Nur Azizah Nur Indah Yuli Astuti, Nur Indah Yuli Pandu Anggara Purhadi Purhadi Puspita Kartikasari Ragil Saputra Rahmasari Nur Azizah Reza Dwi Fitriani Rezzy Eko Caraka Riama Oktaviani Samosir, Riama Oktaviani Rifki Adi Pamungkas, Rifki Adi Rita Rahmawati Rita Rahmawati Riza Fahlevi Rizki Brendita Br Tarigan Rose Debora Julianisa, Rose Debora Rukun Santoso Rung Ching Chen Saepudin, Yunus Sakhinah Abu Bakar Salma Farah Aliyah Sari, Ajeng Arum Sari, Indri Puspita Satriyo Adhy Setiawan Setiawan Setyoko Prismanu Ramadhan Siahaan, Rina Br Siska Alvitiani Siti Maulina Meutuah Sri Endah Moelya Artha Sudarno Sudarno Sudarno Sudarno Sugito Sugito - Sugito Sugito Suhartono Suhartono Suparti Suparti Tarno Tarno Tarno Tarno Tatik Widiharih Tiani Wahyu Utami Tsania Faizia Ubudia Hiliaily Chairunnnisa Via Risqiyanti Wahyu Sabtika Wawan Sugiarto, Wawan Wulandari, Heni Dwi Wulandari, Isna Youngjo Lee Yuciana Wilandari Yudha Subakti, Yudha Zulfa Wahyu Mardika, Zulfa Wahyu