p-Index From 2021 - 2026
6.677
P-Index
This Author published in this journals
All Journal Information Technology and Telematics Dinamik Jupiter Publikasi Eksternal Jurnal Buana Informatika Pixel : Jurnal Ilmiah Komputer Grafis JUITA : Jurnal Informatika Proceeding SENDI_U Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) JURNAL ILMIAH INFORMATIKA JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal Teknik Informatika UNIKA Santo Thomas INTECOMS: Journal of Information Technology and Computer Science Building of Informatics, Technology and Science Jurnal Teknologi Informasi dan Terapan (J-TIT) Jurnal Manajemen Informatika dan Sistem Informasi Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Jurnal Teknik Elektro dan Komputasi (ELKOM) JATI (Jurnal Mahasiswa Teknik Informatika) Aiti: Jurnal Teknologi Informasi Dinamika Informatika: Jurnal Ilmiah Teknologi Informasi Jurnal Teknik Informatika (JUTIF) JURPIKAT (Jurnal Pengabdian Kepada Masyarakat) International Journal of Social Learning (IJSL) Jurnal Teknik Informatika Unika Santo Thomas (JTIUST) Jurnal Teknoif Teknik Informatika Institut Teknologi Padang Jurnal Informatika Teknologi dan Sains (Jinteks) Maritime Park: Journal Of Maritime Technology and Socienty Jurnal Pengabdian Masyarakat Intimas (Jurnal INTIMAS): Inovasi Teknologi Informasi Dan Komputer Untuk Masyarakat Eduvest - Journal of Universal Studies Seminar Nasional Teknologi dan Multidisiplin Ilmu Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) INOVTEK Polbeng - Seri Informatika
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Building of Informatics, Technology and Science

Perbandingan Kinerja LSTM, Bi-LSTM, dan Prophet untuk Prediksi Kekeringan berdasarkan SPEI (Standardized Precipitation-Evapotranspiration Index) Amalina, Hana; Zuliarso, Eri
Building of Informatics, Technology and Science (BITS) Vol 7 No 2 (2025): September 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i2.7971

Abstract

Drought is a natural disaster with widespread impacts on agriculture and water availability, particularly in the Gajah Mungkur Reservoir area of Wonogiri Regency, Indonesia. Rainfall instability driven by global climate change and local climate variability is the primary cause of this disaster. Accurate drought prediction is essential for formulating sustainable mitigation strategies. This study aims to analyze drought characteristics in the Gajah Mungkur Reservoir, Wonogiri Regency, using the Standardized Precipitation Evapotranspiration Index (SPEI) and to compare the performance of three prediction models: Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and Prophet in predicting SPEI. The dataset includes monthly rainfall and air temperature data from 1995 to 2024. The analysis reveals that longer SPEI time scales tend to show more temporally concentrated drought patterns. At the 6-month SPEI scale, which represents long-term drought, a total of 55 drought months were detected between 1995 and 2024, with major drought episodes occurring in 1996–1997, 2000–2007, 2019, and 2023–2024. Model performance evaluation shows a numerical trend in which Bi-LSTM outperforms others for 1-month SPEI prediction, while LSTM performs better at the 3- and 6-month scales. However, statistical significance testing indicates that the performance differences among the three models are not significant (p > 0,05), suggesting that other factors such as computational efficiency may be important considerations in practical applications.
Perbandingan Metode Recurrent Neural Network (RNN) dan Long Short-Term Memory (LSTM) untuk Prediksi Curah Hujan Hermawan, Taufan; Zuliarso, Eri
Building of Informatics, Technology and Science (BITS) Vol 7 No 2 (2025): September 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i2.8099

Abstract

The increase in extreme rainfall intensity due to climate change has caused Batang Regency to become a hydrometeorological disaster-prone area. This research aims to build an day rainfall prediction model using Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) based on BMKG historical data. The model is evaluated using Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) metrics. The results show that LSTM has higher accuracy than RNN, with an RMSE: 0.1036 | MAE: 0.0730. Meanwhile, RNN obtained an RMSE: 0.1035 | MAE: 0.0763. LSTM is also more stable in predicting temperature, direction, and wind speed variables. These findings show that LSTM is more effective for weather time series data and can be used as a basis for developing data-based disaster early warning systems in local areas.