p-Index From 2021 - 2026
6.677
P-Index
This Author published in this journals
All Journal Information Technology and Telematics Dinamik Jupiter Publikasi Eksternal Jurnal Buana Informatika Pixel : Jurnal Ilmiah Komputer Grafis JUITA : Jurnal Informatika Proceeding SENDI_U Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) JURNAL ILMIAH INFORMATIKA JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal Teknik Informatika UNIKA Santo Thomas INTECOMS: Journal of Information Technology and Computer Science Building of Informatics, Technology and Science Jurnal Teknologi Informasi dan Terapan (J-TIT) Jurnal Manajemen Informatika dan Sistem Informasi Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Jurnal Teknik Elektro dan Komputasi (ELKOM) JATI (Jurnal Mahasiswa Teknik Informatika) Aiti: Jurnal Teknologi Informasi Dinamika Informatika: Jurnal Ilmiah Teknologi Informasi Jurnal Teknik Informatika (JUTIF) JURPIKAT (Jurnal Pengabdian Kepada Masyarakat) International Journal of Social Learning (IJSL) Jurnal Teknik Informatika Unika Santo Thomas (JTIUST) Jurnal Teknoif Teknik Informatika Institut Teknologi Padang Jurnal Informatika Teknologi dan Sains (Jinteks) Maritime Park: Journal Of Maritime Technology and Socienty Jurnal Pengabdian Masyarakat Intimas (Jurnal INTIMAS): Inovasi Teknologi Informasi Dan Komputer Untuk Masyarakat Eduvest - Journal of Universal Studies Seminar Nasional Teknologi dan Multidisiplin Ilmu Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) INOVTEK Polbeng - Seri Informatika
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jupiter

Deteksi Tanaman Herbal Khusus Untuk Penyakit Kulit Dan Penyakit Rambut Menggunakan Convolutional Neural Network (CNN) Dan Tensorflow Anefia Mutiara Atha; Eri Zuliarso
JUPITER (Jurnal Penelitian Ilmu dan Teknologi Komputer) Vol 14 No 2-a (2022): Jupiter Edisi Oktober 2022
Publisher : Teknik Komputer Politeknik Negeri Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5281./4736/5.jupiter.2022.10

Abstract

Herbal plants are plants with various benefits, one of which can be used to treat diseases naturally, especially skin diseases and hair diseases. Indonesian people are susceptible to skin and hair diseases because Indonesia is a country with a tropical climate. In this modern era, most people are not proficient enough at distinguishing between herbal plants and ordinary plants, which can cause errors in choosing herbal plants. So the researchers specifically made an herbal plant detection system for skin and hair diseases using the Convolutional Neural Network (CNN) model and Tensorflow framework and to help the public recognize herbal plants. The Convolutional Neural Network (CNN) model in this system is used to process two-dimensional data in the form of images. This research uses the Tensorflow framework which functions to run the recognition system. The result of the application test by using the picture of herbal plants can provide the highest accuracy in the sample test reaching 100%, and the average accuracy reaching 93%. So that android-based application is useable to make people easier to identify particular herbal plants for skin and hair diseases.