Claim Missing Document
Check
Articles

Found 37 Documents
Search

Requirement Engineering Aplikasi E-Rapor SMK Negeri 3 Ambon Dengan Pemanfaatan Teknologi RESTful API Hetharion, Sthania; Bangkalang, Dwi Hosanna
Jurnal Teknologi Dan Sistem Informasi Bisnis Vol 6 No 4 (2024): Oktober 2024
Publisher : Prodi Sistem Informasi Universitas Dharma Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47233/jteksis.v6i4.1602

Abstract

SMK Negeri 3 Ambon manages grades using the Implementation of the Independent Curriculum (IKM) assessment format in Microsoft Excel files. However, managing student grades takes a long time to be processed into report card grades. Therefore, an integrated e-report application is needed to help the school manage student grades more efficiently and effectively. The e-report application will be designed as a website using the requirement engineering method by Loucopoulos and Kanakostas, which follows an iterative requirement engineering process model. This system is designed utilizing RESTful API technology to avoid data redundancy, speed up data exchange, and integrate with other systems in use, such as the Advanced Message Queuing Protocol (AMQP). Usability testing was conducted using the System Usability Scale (SUS) to validate the system design. The results obtained from the testing phase showed a score of 74.26%, which indicates that the system is good and acceptable to users.
Implementation and Training of Congregation Data Management Application at GPID Eben Haezer Palu Bangkalang, Dwi Hosanna; Evangs; Setiyawati, Nina; Hartomo, Kristoko Dwi; Pakereng, Magdalena Ariance Ineke
IJECS: Indonesian Journal of Empowerment and Community Services Vol. 6 No. 1 (2025)
Publisher : Universitas Veteran Bangun Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32585/ijecs.v6i1.5953

Abstract

Congregation data collection at GPID Eben Haezer is still done manually. This causes a lot of congregation data to be unsynchronized between the written data and the actual data. In addition, it also results in inefficient administrative services to the congregation. The vision of church digitalization also raises its own problems for the church, namely the unpreparedness of the church's human resources (HR) in digital capabilities. This Community Service (PkM) activity is to help and facilitate GPID Eben Haezer in implementing congregation data management applications and mentoring training in the process of adopting technology in church governance. The training activity was attended by 7 church admins and was carried out after the stages of formulating partner needs, adjusting and implementing the application. After the training, the application usability was measured using the System Usability Scale (SUS) and a score of 83 was obtained, indicating that the implemented application was EXCELLENT and ACCEPTABLE.  Keywords: Congregation Data Collection Application; Digital Skills; Training; System Usability Scale
Evaluating the User Experience of a Mobile Ticketing Application using the User Experience Questionnaire (UEQ) Bailaen, Elsa Anjamilen; Bangkalang, Dwi Hosanna
SISTEMASI Vol 14, No 3 (2025): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v14i3.5243

Abstract

The digitalization of the mobile ticketing sector in Indonesia has seen significant growth, with a projected 50% increase in mobile ticketing app usage by 2025. Popular applications such as Traveloka, Tiket.com, Agoda, and Booking.com dominate the market, yet they face several technical challenges, including navigation difficulties, unclear interfaces, performance bugs during peak hours, slow application response times, and limited features. This study employed the User Experience Questionnaire (UEQ) method and involved 578 respondents selected through purposive sampling. The criteria included active users of one of the mobile ticketing apps and individuals aged between 20 and 40 years. The results of the t-test revealed that Agoda needs to improve the perspicuity aspect by simplifying its dense user interface, particularly in accommodation and travel ticket searches. Regarding efficiency, Traveloka, Agoda, and Booking.com must enhance their search systems and address bugs/errors that disrupt performance during peak usage times. For stimulation, Traveloka should enhance user experience by providing a more dynamic and responsive layout when navigating pages or performing searches. In terms of novelty, both Agoda and Booking.com are advised to integrate local e-wallets such as GoPay, OVO, and DANA, as well as bank transfer options, since currently they only support credit card payments. These findings highlight the critical role of UX in improving user satisfaction and suggest that continuous user-centered development is essential for maintaining competitiveness in the mobile ticketing industry.
Design and Implementation of an ETL Pipeline for Prospective Student Data Analysis in Higher Education Admissions Setiyawati, Nina; Bangkalang, Dwi Hosanna; Asmara, Gilang Windu
SISTEMASI Vol 14, No 5 (2025): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v14i4.5158

Abstract

The number of universities in Indonesia continues to grow. This condition certainly makes the flow of new student admissions increasingly competitive between universities, thus encouraging universities to do branding, show quality, and do the right positioning. Therefore, it is important for universities to adopt a data-driven approach that can provide in-depth insights into prospective students and the effectiveness of marketing strategies. The purpose of this study is to design and build an ETL (Extract, Transform, Load) pipeline to collect, process, and analyze prospective student data as part of the business intelligence (BI) system to be built. The proposed ETL architecture design supports automated microservices-based data transformation in data cleaning, normalization, and integration. In addition, it can also be used as a solution to increase the scalability and flexibility of data mobilization in the BI system. This study introduces a novel approach by designing an ETL pipeline within a business intelligence framework aimed at enhancing university marketing efforts. Unlike prior research, which has primarily applied business intelligence tools to evaluate academic activities within learning management systems, this work shifts the focus to marketing analytics. Additionally, while existing studies on higher education marketing often center around digital marketing techniques and the marketing mix, this research fills a gap by proposing a technical infrastructure that supports data-driven marketing through automated ETL processes. The resulting ETL was tested using several methods, namely Source to Target Count Testing, Source to Target Data Testing, Duplicate Data Check Testing, and Data Transformation Testing. The results of each test are valid
Developing a Web-based MSME Sales Revenue Data Management and Reporting Portal Using OAuth 2.0 Setiyawati, Nina; Bangkalang, Dwi Hosanna
Jurnal Informatika: Jurnal Pengembangan IT Vol 10, No 3 (2025)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v10i3.8598

Abstract

The Cooperatives and SMEs Service (DinKopUKM) under the Ministry of Cooperatives and SMEs play a vital role in coordinating the implementation of tasks, coaching and providing administrative support for MSMEs. In this research, a portal for managing MSME data and Sales Revenue reporting was carried out to support transparent information management, monitoring MSME business implementation, and encouraging orderly administration in MSMEs so as to optimize efforts to empower MSMEs. The portal was developed using Laravel technology for the backend and NextJS for the frontend, with a responsive web design so that it can be accessed from various devices. Apart from that, to support data integration and data communication with resources that have been built in previous research, OAuth 2.0 was implemented. The development process is in accordance with the Prototyping process model. The portal developed was tested using the black box testing method. It was found that this portal was in accordance with the needs and design of the system. The portal developed helps DinKopUKM in carrying out its duties of data collection on MSMEs, monitoring MSMEs, and encouraging MSMEs to maintain orderly administration
Perbandingan Bidirectional Encoder Representations from Transformers (BERT) Language Model pada Deteksi Emosi Bangkalang, Dwi Hosanna; Setiyawati, Nina
Jurnal Pendidikan dan Teknologi Indonesia Vol 5 No 9 (2025): JPTI - September 2025
Publisher : CV Infinite Corporation

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jpti.988

Abstract

Informasi Tekstual menjadi salah satu cara untuk deteksi emosi. Namun, ekstraksi emosi menjadi tantangan tersendiri dikarenakan makna implisit dan eksplisit yang terkandung dalam teks. Pendekatan Ekstraksi makna emosi berbasis teks sudah banyak dilakukan dengan model deep learning. Meski begitu, performa komputasi dan akurasi model sering kali kontradiktif dikarenakan model yang kompleks. Oleh karena itu, dilakukan eksperimental model deep learning menggunakan BERT Model Language untuk deteksi emosi. Tujuan penelitian ini yaitu menghasilkan model deteksi emosi yang optimal dan akurat yang dapat memberikan performa komputasi yang rendah. Metode yang digunakan pada penelitian ini yaitu data collection, data pre-processing, arsitektur BERT, BERT Model Comparison, dan Model Evaluation. Model deteksi emosi terbaik ditemukan pada model DistilBERT dengan akurasi 0.9425 dan nilai F1 0.942. Berdasarkan evaluasi proses pembelajaran model DistilBERT, terdapat loss trend menurun sehingga model semakin mampu untuk melakukan prediksi emosi yang baik terhadap unseen data. Model deteksi emosi yang diusulkan, menghasilkan performa lebih unggul dibandingkan dengan model deteksi emosi menggunakan deep learning pada penelitian sebelumnya dimana model ini dapat meminimalisir kompleksitas model deteksi emosi, mengurangi komputasi namun tetap memberikan performa yang optimal.
Perancangan Model Pengenalan Emosi Berbasis Teks Berbahasa Inggris Menggunakan Lima Algoritma Klasifikasi Machine Learning Soebroto, Dorkas Tri Oktavena; Setiyawati, Nina; Bangkalang, Dwi Hosanna
Jurnal Pendidikan dan Teknologi Indonesia Vol 5 No 9 (2025): JPTI - September 2025
Publisher : CV Infinite Corporation

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jpti.1084

Abstract

Saat ini, interaksi melalui platform teks marak dilakukan seperti media sosial, layanan pelanggan daring, dan forum diskusi. Oleh karena itu analisis Text Emotion Recognition (TER) menjadi sangat krusial. Namun, emosi dalam teks bersifat kompleks, kontekstual, dan sering kali bersifat implisit, sehingga tidak dapat dengan mudah diidentifikasi menggunakan pendekatan konvensional. TER merupakan proses identifikasi dan klasifikasi emosi dalam teks secara otomatis menggunakan teknik machine learning. Penelitian ini bertujuan untuk merancang model pengklasifikasian emosi berbasis teks menggunakan berbagai algoritma classification machine learning. Data teks dikategorikan ke dalam enam emosi utama: sadness, joy, love, anger, fear, dan surprise. Tahapan preprocessing meliputi tokenisasi, stop word removal, dan lemmatization, sedangkan fitur teks direpresentasikan dalam bentuk numerik menggunakan Term Frequency-Inverse Document Frequency (TF-IDF). Lima algoritma machine learning, yaitu Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest, Logistic Regression, dan Multinomial Naïve Bayes, digunakan dalam pelatihan dan evaluasi model. Hasil penelitian menunjukkan bahwa model SVM dan Random Forest memberikan performa terbaik dengan akurasi mencapai 85% pada data uji. Dengan demikian, pendekatan machine learning, khususnya SVM dan Random Forest, terbukti efektif dalam klasifikasi teks emosi dan dapat diterapkan dalam berbagai aplikasi analisis sentimen. Model TER hasil eksperimental akan dilanjutkan untuk diimplementasikan pada aplikasi penanganan psikologis korban kekerasan berbasis gender (KBG) yang telah dibangun pada penelitian sebelumnya.