Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JUITA : Jurnal Informatika

Handling Noise Data with PCA Method and Optimization Using Hybrid Fuzzy C-Means and Genetic Algorithm Widianti, Risa; Surono, Sugiyarto; Ibraheem, Kais Ismail
JUITA: Jurnal Informatika JUITA Vol. 12 No. 2, November 2024
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/juita.v12i2.21765

Abstract

The significance of machine learning (ML) and data mining techniques particularly clustering is examined in this research, in managing large data sets for customer segmentation in the retail sector. The research emphasizes the challenges posed by data noise and proposes a solution using Principal Component Analysis (PCA) to improve accuracy. This study introduces a hybrid approach that combines Fuzzy C-Means (FCM) with genetic algorithms for optimization in customer segmentation, and suggests further research on the optimal number of clusters and data noise elimination. By addressing data noise, the proposed PCA-based method achieved a higher accuracy rate of 98% compared to 93% without PCA. This finding underscores the effectiveness of PCA in noise reduction, improving clustering accuracy. This research contributes to the advancement of customer-focused business strategies through better data analysis and interpretation. The proposed approach has potential applications in areas including data analysis, pattern recognition, and image processing, highlighting its relevance in the contemporary business environment.
Performance Analysis of Resampling Techniques for Overcoming Data Imbalance in Multiclass Classification Larasati, Anggit; Surono, Sugiyarto; Thobirin, Aris; Dewi, Deshinta Arrova
JUITA: Jurnal Informatika JUITA Vol. 13 Issue 1, March 2025
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/juita.v13i1.25270

Abstract

In the digital era, the development of modern technology has brought significant transformation to the medical world. The main objective of this research is to identify the performance of deep learning models in classifying kidney disease. By integrating the Convolutional Neural Network model, the performance of the classification process can be analyzed effectively and efficiently. However, data imbalance dramatically affects the performance evaluation of a model, requiring data resampling techniques. This research applies two resampling techniques, bootstrap-based random oversampling and random undersampling, to training data and adds data augmentation to increase image variations to prevent model overfitting. The architecture uses MobileNetV2, which compares hyperparameter fine-tuning in three optimizers. This research shows that the performance of MobileNetV2, which implements the bootstrap-based random oversampling technique, has the highest accuracy compared to random undersampling and no resampling methods. The oversampling technique with the RMSprop optimizer produced the highest accuracy, namely 95%. With precision, recall, and F-1 score, respectively, 0.93, 0.95, 0.94. The accuracy of oversampling with the Adam and Nadam optimizer is 94%. So, the contribution of this research is by applying bootstrap-based oversampling techniques and adding data augmentation to produce good model performance to be used to classify medical images.