Claim Missing Document
Check
Articles

Found 22 Documents
Search

Model Hybrid Random Forest dan Information Gain untuk Meningkatkan Performa Algoritma Machine Learning pada Deteksi Malicious Software Rafrastara, Fauzi Adi; Ghozi, Wildanil; Sani, Ramadhan Rakhmat; Handoko, L. Budi
Jurnal Informatika dan Rekayasa Perangkat Lunak Vol 6, No 2 (2024): September
Publisher : Universitas Wahid Hasyim

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36499/jinrpl.v6i2.11216

Abstract

Evolusi malware atau perangkat lunak berbahaya semakin meningkatkan kekhawatiran, menyerang tidak hanya komputer tetapi juga perangkat lain seperti smartphone. Malware kini tidak hanya berbentuk monomorfik, tetapi telah berkembang menjadi bentuk polimorfik, metamorfik, hingga oligomorfik. Dengan perkembangan massif ini, perangkat lunak antivirus konvensional tidak akan mampu mengatasinya dengan baik. Hal ini disebabkan oleh kemampuan malware untuk menyebarkan dirinya dengan pola sidik jari dan perilaku yang berbeda. Oleh karena itu, diperlukan antivirus cerdas berbasis machine learning yang mampu mendeteksi malware berdasarkan perilaku bukan sidik jari. Penelitian ini berfokus pada implementasi model machine learning dalam deteksi malware dengan menggunakan algoritma ensemble dan seleksi fitur untuk mencapai kinerja yang baik. Algoritma ensemble yang digunakan adalah Random Forest, dievaluasi dan dibandingkan dengan k-Nearest Neighbor dan Decision Tree sebagai state-of-the-art. Untuk meningkatkan kinerja klasifikasi dalam hal kecepatan proses, metode seleksi fitur yang diterapkan adalah Information Gain dengan 22 fitur. Hasil tertinggi dicapai dengan menggunakan algoritma Random Forest dan metode seleksi fitur Information Gain, mencapai skor 99.0% untuk akurasi dan F1-Score. Dengan mengurangi jumlah fitur, kecepatan pemrosesan dapat ditingkatkan hingga hampir 5 kali lipat.
IMPROVING MALWARE DETECTION USING INFORMATION GAIN AND ENSEMBLE MACHINE LEARNING Ramadhani, Arsabilla; Rafrastara, Fauzi Adi; Rosyada, Salma; Ghozi, Wildanil; Osman, Waleed Mahgoub
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 6 (2024): JUTIF Volume 5, Number 6, Desember 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.6.3903

Abstract

Malware attacks pose a serious threat to digital systems, potentially causing data and financial losses. The increasing complexity and diversity of malware attack techniques have made traditional detection methods ineffective, thus AI-based approaches are needed to improve the accuracy and efficiency of malware detection, especially for detecting modern malware that uses obfuscation techniques. This study addresses this issue by applying ensemble-based machine learning algorithms to enhance malware detection accuracy. The methodology used involves Random Forest, Gradient Boosting, XGBoost, and AdaBoost, with feature selection using Information Gain. Datasets from VirusTotal and VxHeaven, including both goodware and malware samples. The results show that Gradient Boosting, strengthened with Information Gain, achieved the highest accuracy of 99.1%, indicating a significant improvement in malware detection effectiveness. This study demonstrates that applying Information Gain to Gradient Boosting can improve malware detection accuracy while reducing computational requirements, contributing significantly to the optimization of digital security systems.
Integrating Ensemble Learning and Information Gain for Malware Detection based on Static and Dynamic Features Sani, Ramadhan Rakhmat; Rafrastara, Fauzi Adi; Ghozi, Wildanil
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 1, February 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i1.2051

Abstract

The rapid advancement of malware poses a significant threat to devices, like personal computers and mobile phones. One of the most serious threats commonly faced is malicious software, including viruses, worms, trojan horses, and ransomware. Conventional antivirus software is becoming ineffective against the ever-evolving nature of malware, which can now take on various forms like polymorphic, metamorphic, and oligomorphic variants. These advanced malware types can not only replicate and distribute themselves, but also create unique fingerprints for each offspring. To address this challenge, a new generation of antivirus software based on machine learning is needed. This intelligent approach can detect malware based on its behavior, rather than relying on outdated fingerprint-based methods. This study explored the integration of machine learning models for malware detection using various ensemble algorithms and feature selection techniques. The study compared three ensemble algorithms: Gradient Boosting, Random Forest, and AdaBoost. It used Information Gain for feature selection, analyzing 21 features. Additionally, the study employed a public dataset called ‘Malware Static and Dynamic Features VxHeaven and VirusTotal Data Set’, which encompasses both static and dynamic malware features. The results demonstrate that the Gradient Boosting algorithm combined with Information Gain feature selection achieved the highest performance, reaching an accuracy and F1-Score of 99.2%.
Impact of SMOTE for Imbalance Class in DDoS Attack Detection Using Deep Learning MLP Ilma, Zidni; Ghozi, Wildanil; Rafrastara, Fauzi Adi
Building of Informatics, Technology and Science (BITS) Vol 6 No 4 (2025): March 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i4.6727

Abstract

DDoS attacks, which are becoming increasingly complex and frequent, pose significant challenges to network security, particularly with the rise of cyber exploitation of infrastructure. A major issue in detecting these attacks is the imbalance between normal traffic and attack data, which causes machine learning models to be biased toward the majority class. To address this, this study proposes the use of the Synthetic Minority Over-sampling Technique (SMOTE) to balance the CIC-DDoS2019 dataset, successfully enhancing the performance of a Multi-Layer Perceptron (MLP) in detecting various types of attacks. Analysis results indicate that, on the original dataset without SMOTE, the model achieved high accuracy but low F1-Score for minority classes, highlighting difficulties in recognizing underrepresented attack patterns. After applying SMOTE, the F1-Score significantly improved for minority classes, demonstrating the model's enhanced ability to identify attack patterns. All dataset subsets showed improved performance across key evaluation metrics, indicating that SMOTE effectively expanded the model's decision boundary for minority classes, enabling MLP to detect DDoS attacks more accurately in previously challenging data patterns. This approach illustrates increased model sensitivity to minority feature distributions without significantly compromising performance on majority classes.
Model Hybrid Random Forest dan Information Gain untuk meningkatkan Performa Algoritma Machine Learning pada Deteksi Malicious Software Rafrastara, Fauzi Adi; Ghozi, Wildanil; Sani, Ramadhan Rakhmat; Handoko, L. Budi
Jurnal Informatika dan Rekayasa Perangkat Lunak Vol. 6 No. 2 (2024): September
Publisher : Universitas Wahid Hasyim

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The evolution of malware, or malicious software, has raised increasing concerns, targeting not only computers but also other devices like smartphones. Malware is no longer just monomorphic but has evolved into polymorphic, metamorphic, and oligomorphic forms. With this massive development, conventional antivirus software is becoming less effective at countering it. This is due to malware's ability to propagate itself using different fingerprint and behavioral patterns. Therefore, an intelligent machine learning-based antivirus is needed, capable of detecting malware based on behavior rather than fingerprints. This research focuses on the implementation of a machine learning model for malware detection using ensemble algorithms and feature selection to achieve optimal performance. The ensemble algorithm used is Random Forest, evaluated and compared with k-Nearest Neighbor and Decision Tree as state-of-the-art methods. To enhance classification performance in terms of processing speed, the feature selection method applied is Information Gain, with 22 features. The highest results were achieved using the Random Forest algorithm and Information Gain feature selection method, reaching a score of 99.0% for accuracy and F1-Score. By reducing the number of features, processing speed can be increased by almost fivefold.
Deteksi Serangan Denial of Service (DoS) dan Spoofing pada Internet of Vehicles menggunakan Algoritma K-Nearest Neighbor (KNN) Ghozi, Wildanil; Rafrastara, Fauzi Adi; Sani, Ramadhan Rakhmat; Abdussalam, Abdussalam
Jurnal Informatika dan Rekayasa Perangkat Lunak Vol. 6 No. 2 (2024): September
Publisher : Universitas Wahid Hasyim

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The implementation of Internet of Things (IoT) technology in motor vehicles has been increasing over time and is known as the Internet of Vehicles (IoV). IoV is becoming more essential to society as it provides comfort, safety, and efficiency in driving. Unfortunately, the use of internet technology in IoV brings the potential for cyber-attacks, such as Denial of Service (DoS) and Spoofing. Intrusion Detection Systems in IoV have not yet fully matured, as this technology is still relatively new. Therefore, the potential threats and their significant impact make research on this topic urgently needed. This study aims to evaluate the performance of the k-Nearest Neighbor (kNN) classification algorithm in detecting cyber-attacks on IoV. The predicted classes in this study consist of six categories: Benign, DoS, Gas-Spoofing, Steering Wheel-Spoofing, Speed-Spoofing, and RPM-Spoofing. These two types of attacks on IoV (DoS and Spoofing) pose risks to the operational safety of vehicles, which can endanger drivers and other road users. The dataset used is a public dataset called CIC IoV2024. The performance of the kNN algorithm is also compared to three other state-of-the-art algorithms, including Naïve Bayes, Deep Neural Network, and Random Forest. The results show that k-Nearest Neighbor (kNN) achieved the best performance with a score of 98.7% for both accuracy and F1-Score metrics. kNN outperformed Naïve Bayes, which ranked second with a score of 98.1% accuracy and 98.0% F1-Score. Thus, the kNN algorithm can be recommended as a classifier in the development of an intrusion detection system for IoV
Enhancing Fraud Detection Performance in E-Commerce Platforms Using Gradient Boosting Algorithms Saputra, Ardi; Rafrastara, Fauzi Adi; Ghozi, Wildanil
INOVTEK Polbeng - Seri Informatika Vol. 10 No. 2 (2025): Juli
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/s8q6t594

Abstract

The rapid growth of e-commerce has attracted many users. However, as transaction volumes increase, so do cases of fraud. This not only causes financial losses for sellers but also threatens the trust that is so important in the e-commerce industry. Previous studies have used the Naïve Bayes and Multilayer Perceptron algorithms to detect fraud in e-commerce with accuracy percentages of 95.00% and 94.00%, respectively, without other assessment measures, including precision, recall, and F1-score. This research seeks to create a predictive model for the likelihood of online sales fraud by comparing Gradient Boosting, Neural Network, Random Forest, and Naïve Bayes models through feature extraction and feature scaling pre-processing, with 10-fold cross-validation. The dataset used was taken from the Kaggle platform. The features included in the dataset include buyer characteristics, products sold, transaction volume, devices used, and other fraud indicators. The study's findings demonstrate that the Gradient Boosting algorithm excels in detecting fraud risk with an accuracy rate of 95.30%, precision of 94.10%, recall of 95.30%, and an F1-score of 93.80%.  These findings are anticipated to enhance the development of more efficient e-commerce security solutions.
Enhancing XGBoost Performance in Malware Detection through Chi-Squared Feature Selection Rosyada, Salma; Rafrastara, Fauzi Adi; Ramadhani, Arsabilla; Ghozi, Wildanil; Yassin, Warusia
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 13 No. 3 (2024): NOVEMBER
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i3.2293

Abstract

The increasing prevalence of malware poses significant risks, including data loss and unauthorized access. These threats manifest in various forms, such as viruses, Trojans, worms, and ransomware. Each continually evolves to exploit system vulnerabilities. Ransomware has seen a particularly rapid increase, as evidenced by the devastating WannaCry attack of 2017 which crippled critical infrastructure and caused immense economic damage. Due to their heavy reliance on signature-based techniques, traditional anti-malware solutions struggle to keep pace with malware's evolving nature. However, these techniques face limitations, as even slight code modifications can allow malware to evade detection. Consequently, this highlights weaknesses in current cybersecurity defenses and underscores the need for more sophisticated detection methods. To address these challenges, this study proposes an enhanced malware detection approach utilizing Extreme Gradient Boosting (XGBoost) in conjunction with Chi-Squared Feature Selection. The research applied XGBoost to a malware dataset and implemented preprocessing steps such as class balancing and feature scaling. Furthermore, the incorporation of Chi-Squared Feature Selection improved the model's accuracy from 99.1% to 99.2% and reduced testing time by 89.28%, demonstrating its efficacy and efficiency. These results confirm that prioritizing relevant features enhances both the accuracy and computational speed of the model. Ultimately, combining feature selection with machine learning techniques proves effective in addressing modern malware detection challenges, not only enhancing accuracy but also expediting processing times.             
Comparative Analysis of Feature Selection Methods with XGBoost for Malware Detection on the Drebin Dataset Latifah, Ines Aulia; Rafrastara, Fauzi Adi; Bintoro, Jevan; Ghozi, Wildanil; Osman, Waleed Mahgoub
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 13 No. 3 (2024): NOVEMBER
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i3.2294

Abstract

Malware, or malicious software, continues to evolve alongside increasing cyberattacks targeting individual devices and critical infrastructure. Traditional detection methods, such as signature-based detection, are often ineffective against new or polymorphic malware. Therefore, advanced malware detection methods are increasingly needed to counter these evolving threats. This study aims to compare the performance of various feature selection methods combined with the XGBoost algorithm for malware detection using the Drebin dataset, and to identify the best feature selection method to enhance accuracy and efficiency. The experimental results show that XGBoost with the Information Gain method achieves the highest accuracy of 98.7%, with faster training times than other methods like Chi-Squared and ANOVA, which each achieved an accuracy of 98.3%. Information Gain yielded the best performance in accuracy and training time efficiency, while Chi-Squared and ANOVA offered competitive but slightly lower results. This study highlights that appropriate feature selection within machine learning algorithms can significantly improve malware detection accuracy, potentially aiding in real-world cybersecurity applications to prevent harmful cyberattacks.
Performance Improvement of Machine Learning Algorithm using PCA on IoV Attack Putra Hartanto, Octaviano Ryan Eka; Ghozi, Wildanil; Rafrastara, Fauzi Adi; Paramita, Cinantya
Jurnal Informatika: Jurnal Pengembangan IT Vol 10, No 2 (2025)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v10i2.8064

Abstract

In the transportation industry, the Internet of Vehicles (IoV) is an advancement of the Internet of Things (IoT), allowing automobiles to connect to networks to provide a range of features. This connectivity transforms traditional vehicles into intelligent systems, fostering innovations like autonomous driving and traffic optimization. However, this increased connectivity exposes IoV to cybersecurity threats, particularly because the networks utilized are often public and lack robust security measures. Cyberattacks targeting IoV can involve data packet modification, traffic flooding, or spoofing, potentially disabling critical vehicle components, compromising passenger safety, and increasing the risk of accidents. Consequently, accurate and efficient attack detection systems are essential to counter these threats and ensure IoV security. This study leverages the CICIoV2024 dataset and applies Principal Component Analysis (PCA) to enhance computational efficiency in detecting IoV attacks. The algorithms employed in this research include Random Forest, AdaBoost, Logistic Regression, and Deep Neural Networks. Experimental results demonstrate that implementing PCA significantly improves computational efficiency across all algorithms while maintaining consistent accuracy and F1-Score, highlighting its effectiveness in securing IoV systems.