Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Multiscale Materials Informatics

Development of a Machine Learning Model to Predict the Corrosion Inhibition Ability of Benzimidazole Compounds Safitri, Aprilyani Nur; Trisnapradika, Gustina Alfa; Kurniawan, Achmad Wahid; Prabowo, Wahyu AJi Eko; Akrom, Muhamad
Journal of Multiscale Materials Informatics Vol. 1 No. 1 (2024): April
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jimat.v1i1.10464

Abstract

The purpose of this study is to use quantitative structure-property relationship (QSPR)-based machine learning (ML) to examine the corrosion inhibition capabilities of benzimidazole compounds. The primary difficulty in ML development is creating a model with a high degree of precision so that the predictions are correct and pertinent to the material's actual attributes. We assess the comparison between the extra trees regressor (EXT) as an ensemble model and the decision tree regressor (DT) as a basic model. It was discovered that the EXT model had better predictive performance in predicting the corrosion inhibition performance of benzimidazole compounds based on the coefficient of determination (R2) and root mean square error (RMSE) metrics compared DT model. This method provides a fresh viewpoint on the capacity of ML models to forecast potent corrosion inhibitors.
Comparison of Ridge and Kernel Ridge Models in Predicting Thermal Stability of Zn-MOF Catalysts Trisnapradika, Gustina Alfa; Akrom, Muhamad
Journal of Multiscale Materials Informatics Vol. 1 No. 1 (2024): April
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jimat.v1i1.10542

Abstract

This study investigates machine learning-based quantitative structure-property relationship (QSPR) models for predicting the thermal stability of zinc metal-organic frameworks (Zn-MOF). Utilizing a dataset comprising 151 Zn-MOF compounds with relevant molecular descriptors, ridge (R) and kernel ridge (KR) regression models were developed and evaluated. The results demonstrate that the R model outperforms the KR model in terms of prediction accuracy, with the R model exhibiting exceptional performance (R² = 0.999, RMSE = 0.0022). While achieving high accuracy, opportunities for further improvement exist through hyperparameter optimization and exploration of polynomial functions. This research underscores the potential of ML-based QSPR models in predicting the thermal stability of Zn-MOF compounds and highlights avenues for future investigation to enhance model accuracy and applicability in materials science.
Synergizing Quantum Computing and Machine Learning: A Pathway Toward Quantum-Enhanced Intelligence Trisnapradika, Gustina Alfa; Akrom, Muhamad
Journal of Multiscale Materials Informatics Vol. 2 No. 1 (2025): April
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jimat.v2i1.12947

Abstract

The convergence of quantum computing and artificial intelligence has introduced a new paradigm in computational science known as Quantum Artificial Intelligence (QAI). By leveraging quantum mechanical principles such as superposition, entanglement, and quantum parallelism, QAI aims to overcome the limitations of classical machine learning, particularly in handling high-dimensional data, complex optimization, and scalability issues. This paper presents a comprehensive review of foundational concepts in both classical machine learning and quantum computing, followed by an in-depth discussion of emerging quantum algorithms tailored for AI applications, such as quantum neural networks, quantum support vector machines, and variational quantum classifiers. We explore the practical implications of these approaches across key sectors, including healthcare, finance, cybersecurity, and logistics. Furthermore, we identify critical challenges related to hardware limitations, algorithmic stability, data encoding, and ethical considerations. Finally, we outline research directions necessary to advance the field, highlighting the transformative potential of QAI in shaping the next generation of intelligent technologies