p-Index From 2021 - 2026
11.311
P-Index
This Author published in this journals
All Journal TEKNIK INFORMATIKA Syntax Jurnal Informatika Jurnal Ilmu Komputer dan Agri-Informatika SITEKIN: Jurnal Sains, Teknologi dan Industri CESS (Journal of Computer Engineering, System and Science) Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) RABIT: Jurnal Teknologi dan Sistem Informasi Univrab Jurnal Informatika Jurnal CoreIT JURNAL MEDIA INFORMATIKA BUDIDARMA Indonesian Journal of Artificial Intelligence and Data Mining Seminar Nasional Teknologi Informasi Komunikasi dan Industri INOVTEK Polbeng - Seri Informatika JURNAL INSTEK (Informatika Sains dan Teknologi) Jurnal Informatika Universitas Pamulang Jurnal Nasional Komputasi dan Teknologi Informasi JURIKOM (Jurnal Riset Komputer) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) JOISIE (Journal Of Information Systems And Informatics Engineering) Building of Informatics, Technology and Science Progresif: Jurnal Ilmiah Komputer Zonasi: Jurnal Sistem Informasi Journal of Applied Engineering and Technological Science (JAETS) Jurnal Tekinkom (Teknik Informasi dan Komputer) JOURNAL OF INFORMATION SYSTEM MANAGEMENT (JOISM) Indonesian Journal of Electrical Engineering and Computer Science JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) Jurnal Sistem Komputer dan Informatika (JSON) JUKI : Jurnal Komputer dan Informatika TIN: TERAPAN INFORMATIKA NUSANTARA Jurnal Teknik Informatika (JUTIF) Jurnal Restikom : Riset Teknik Informatika dan Komputer Information System Journal (INFOS) Jurnal Computer Science and Information Technology (CoSciTech) Jurnal UNITEK Bulletin of Computer Science Research KLIK: Kajian Ilmiah Informatika dan Komputer Jurnal Informatika Teknologi dan Sains (Jinteks) Malcom: Indonesian Journal of Machine Learning and Computer Science Jurnal Teknik Indonesia Jurnal Informatika: Jurnal Pengembangan IT Jurnal Komtika (Komputasi dan Informatika)
Claim Missing Document
Check
Articles

Clustering Vaksinasi Penyakit Mulut dan Kuku Di Provinsi Riau Menggunakan Algoritma K-Medoids Riska Yuliana; Alwis Nazir; Reski Mai Candra; Suwanto Sanjaya; Fadhilah Syafria
JUKI : Jurnal Komputer dan Informatika Vol. 5 No. 1 (2023): JUKI : Jurnal Komputer dan Informatika, Edisi Mei 2023
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Foot and Mouth Disease (FMD) atau biasa pula disebut penyakit mulut dan kuku (PMK) merupakan penyakit infeksi akut yang menularkan ke hewan lain karena disebabkan oleh virus yang masuk dalam genus Apthovirus dan famili Picornaviridae. PMK perlu ditangani karena menyebabkan kerugian finansial terutama disebabkan oleh penurunan produksi hewan ternak seperti susu maupun daging, produktivitas tenaga kerja serta keterbatasan pangan. Salah satu penanganan dan pengendalian PMK pada hewan ternak sapi yaitu ,melakukan program vaksinasi. Penelitian ini menggunakan data dari Dinas Peternakan dan Kesehatan Provinsi Riau. Penelitian ini menggunakan teknik data mining dalam pengolahan datanya menggunakan metode k-medoids clustering. Proses K-Medoids merupakan proses agregasi yang membagi data menjadi beberapa kelompok, dan hasil dari proses clustering ini tidak bergantung pada urutan record yang dimasukkan. maka metode ini juga dapat mengatasi kelemahan dari k-means. Metode k-medoids dapat diterapkan pada data vaksinasi penyakit mulut dan kuku di Provinsi Riau, dan dapat diidentifikasi kelompok kekebalan hewan berdasarkan data tersebut. . Hasil cluster terbaik setelah dilakukan pengujian yaitu 2 cluster. Cluster terendah berada pada cluster 1 sebanyak 21894 ekor dan cluster 2 sebanyak 48042 ekor. Dimana dalam proses pengujian dilakukan menggunakan Davies Bouldien Index (DBI) mendapatkan nilai -0.482. Diharapkan penelitian ini dapat memberikan perhatian lebih untuk vaksinasi terhadap PMK karena kekebalan hewan yang masih rendah sehingga memudahkan terinfeksinya PMK.
Penerapan Metode K-Means Clustering untuk Pemetaan Pengelompokan Lahan Produksi Tandan Buah Segar Abdussalam Al Masykur; Siska Kurnia Gusti; Suwanto Sanjaya; Febi Yanto; Fadhilah Syafria
Jurnal Informatika Vol 10, No 1 (2023): April 2023
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/inf.v10i1.15621

Abstract

Di Perkebunan Sei Lukut, Desa Maredan Barat, Kecamatan Tualang, Kabupaten Siak, Provinsi Riau, PT. Surya Intisari Raya, sebuah perusahaan swasta, mengelola perkebunan kelapa sawit. Memiliki 4 bagian lahan kelapa sawit yang terdiri dari 216 blok dengan total sekitar 4.000 Ha. Blok kelapa sawit biasanya mencakup 20 hektar dan berisi 28.000 pohon kelapa sawit, dengan kapasitas produksi bulanan sebesar 57 ton. Pemetaan klaster produksi tandan buah segar berupaya membantu pelaku usaha memutuskan kebijakan apa yang akan diterapkan untuk meningkatkan akurasi dan produktivitas produksi minyak sawit. Metode K-Means merupakan komponen dari metode clustering, yang merupakan subset dari kelompok Unsupervised Learning dan digunakan untuk mempartisi data ke dalam berbagai kategori. Untuk mengelompokkan blok lahan berdasarkan delapan data variabel luas pokok, panjang panen, daun lepas, curah hujan, pupuk, tujuan, dan persentase keberhasilan, penelitian ini akan menerapkan Indeks Davies Bouldin dengan alat RapidMiner. Kesimpulan akhir dari penelitian ini adalah sebuah aplikasi yang dapat memetakan pengelompokan areal produksi tandan buah segar dengan menerapkan metode K-Means Clustering, dengan nilai Davies Bouldin Index terkecil sebesar 0,921 pada jumlah cluster 3 yang termasuk Cluster C1 (Produktivitas Sedang). Terdiri dari 96 blok tanah, Cluster C2 (Produktivitas Rendah) terdiri dari 41 blok tanah, dan Cluster C3 (Produktivitas Tinggi) terdiri dari 79 blok tanah.In Sei Lukut Estate, West Maredan Village, Tualang District, Siak District, Riau Province, PT. Surya Intisari Raya, a private business, administers oil palm plantations. It has 4 sections of oil palm land made up of 216 blocks totaling about 4,000 Ha. Blocks of oil palm typically cover 20 hectares and contain 28,000 palm trees, with a monthly output capacity of 57 tons. The mapping of the production clusters for fresh fruit bunches seeks to help the business decide what policies to implement to increase the accuracy and productivity of palm oil production. The K-Means method is a component of the clustering method, which is a subset of the Unsupervised Learning group and is used to partition data into various categories. In order to group land blocks based on the eight variable data areas of total principal, harvest length, loose leaf, rainfall, fertilizer, goal, and percentage of success, this study will apply the Davies Bouldin Index with RapidMiner tools. The final conclusion of this research is an application that can map the grouping of fresh fruit bunch production areas by applying the K-Means Clustering method, with the smallest Davies Bouldin Index value of 0.921 in the number of clusters 3 including Cluster C1 (Medium Productivity) consisting of 96 blocks land, Cluster C2 (Low Productivity) consists of 41 land blocks, and Cluster C3 (High Productivity) consists of 79 land blocks.
Clustering Vaksinasi Penyakit Mulut dan Kuku Menggunakan Algoritma K-Means Adrian Maulana; Alwis Nazir; Reski Mai Candra; Suwanto Sanjaya; Fadhilah Syafria
Journal of Information System Research (JOSH) Vol 4 No 3 (2023): April 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josh.v4i3.3363

Abstract

Foot and Mouth Disease (FMD) is a viral infectious disease that is acute and highly contagious in artiofactyl or even-toed hoofed animals. This disease is caused by tyoe A virus forum picornaviridae, genus Apthovirus namely Aphtaee epizootecae. This disease has a development period of 1-14 days since the infected animal. The defense of this virus is quite strong and survives in glands, milk bones and milk products. The morbidity rate is up to 100% and mortality is high in infected young animals. Areas with the highest transmission of foot and mouth disease are areas with high livestock density, so stricter biosecurity and animal traffic control must be implemented to prevent the disease. The problem in the Departement of Livestock and Animal Health of Riau Province is the difficulty in categorizing food and mouth disease vaccination data of which regions have done the first and second vaccine specifically for cattle in Riau Province. Therefore, this study will categorizing the first and sceond vaccine eith high immunity using K-Means algorithm. Parameter used are vaccination status, breed, gender and age. By applying the K-Means algorithm, two clusters are formed, namely the cluster with high immunity of 21232 cows, and the cluster with low immunity 48704 cows. Testing with DBI with K=2 produces a value of 0.416.
Image Classification of Beef and Pork Using Convolutional Neural Network Architecture EfficienNet-B1 Isnan Mellian Ramadhan; Jasril - Jasril; Suwanto Sanjaya; Febi Yanto; Fadhilah Syafria
Indonesian Journal of Artificial Intelligence and Data Mining Vol 6, No 1 (2023): Maret 2023
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v6i1.21843

Abstract

The increasing demand for beef has made many meat traders mix beef with pork to get more profit. Mixing beef and pork is harmful, especially for Muslims. In this study, the EfficientNet-B1 Convolutional Neural Network (CNN) approach was used to classify beef and pork. Experiments were conducted to compare accuracy using original data (without data augmentation) and with data augmentation. The data augmentation techniques used are rotation and horizontal flip. The total dataset after the data augmentation process is 3000 images. Many different settings were tested, including learning rates (0.00001, 0.0001, 0.001, 0.01, 0.1), batch size (32, 64), and optimizer (Adam, Adamax). After testing the Confusion Matrix, the highest accuracy results were obtained using data augmentation with a batch size of 32 of 98%. Meanwhile, those without data augmentation were 96%
Classification Academic Data using Machine Learning for Decision Making Process Elin Haerani; Fadhilah Syafria; Fitra Lestari; Novriyanto Novriyanto; Ismail Marzuki
Journal of Applied Engineering and Technological Science (JAETS) Vol. 4 No. 2 (2023): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37385/jaets.v4i2.1983

Abstract

One of the qualities of higher education is determined by the success rate of student learning. Assessment of student success rates is based on student graduation on time. Sultan Syarif Kasim State Islamic University Riau is one of the state universities in Riau, with a total of 30,000 students. Of all the active students, there are some who are not. Students who are not active in this case will affect the timeliness of their graduation. The university always evaluates the performance of its students to find out information related to the factors that cause students to become inactive so that they are more likely to drop out and what data affect students being able to graduate on time. The evaluation results are stored in an academic database so that the data can later be used as supporting data when making decisions by the university. This research used data science concepts to explore and extract data sets from databases to find models or patterns, as well as new insights that can be used as tools for decision-making. After the data was explored, machine learning concepts were used to identify and classify the data. The method used was the Decision Tree Method. The results of the study found that these two concepts can provide the expected results. Based on the test results, it is known that the attribute that influences the success of student studies is the grade point average (GPA), where the accuracy of the maximum recognition rate is 88.19%. Keywords : Data science; Decision Tree; Graduate on Time; Machine Learning;
PENERAPAN METODE K-MEANS UNTUK PENGELOMPOKAN DATA KAPAL BARANG (STUDI KASUS: KSOP PEKANBARU) Ariq At-Thariq Putra; Alwis Nazir; Febi Yanto; Suwanto Sanjaya; Fadhilah Syafria
SYNTAX Jurnal Informatika Vol 12 No 01 (2023): Mei 2023
Publisher : Universitas Singaperbangsa Karawang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Transportation by sea is crucial for national development as it contributes to the growth of the economy and other ship transport sectors. With the increasing demand for cargo ships in the maritime transportation industry, data clustering is needed to review the growth of cargo ships in Riau. K-Means is a commonly used technique for clustering data that helps to classify data effectively. This algorithm is not influenced by data series and starts with the random determination of cluster centers during calculation. This cargo ship research aims to classify cargo ship data at the Pekanbaru KSOP, which allows the Pekanbaru KSOP to easily monitor the development of cargo ships.
Analisis Sentimen Tanggapan Masyarakat Terhadap Calon Presiden 2024 Ridwan Kamil Menggunakan Metode Naive Bayes Classifier Neni Sari Putri Juana; Elin Haerani; Fadhilah Syafria; Elvia Budianita
Jurnal Sistem Komputer dan Informatika (JSON) Vol 4, No 4 (2023): Juni 2023
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v4i4.6168

Abstract

Reaction to public facts about the election of the presidential candidate Ridwan Kamil, which will later be obtained, the data is taken from Twitter based on these problems, it is necessary to do sentiment analysis research. Based on the results of this study, the classification process for the Naïve Bayes Classifier has 3 scenarios for dividing training data and test data, namely with 90%:10% training data, the test data produces an accuary value of 85.43%, a recall value of 100.00%, and a precision of 85.33%. For training data 80%: 20% of the test data produces an accuracy value of 86.38%, a recall of 100.00% and a precision value of 86.38% and for data on the distribution of training data 70%: 30% of the test data produces an accuary value of 84.29 %, 100.00% recall and 84.29% precision. From the tweet data that has been used, there are 1262 positive comments and 242 negative comments. These results prove that the Naïve Bayes classifier is very good for conducting sentiment analysis on Twitter comments about the 2024 presidential candidate Ridwan Kamil. The naïve Bayes classifier process gets the highest accuracy value of 86.38% by dividing the training data 80%:20% test data.
Analisa Website Donasi Rumah Tahfizh Menggunakan Metode PIECES Raja Sultan Firsky; Fadhilah Syafria; Muhammad Affandes; Reski Mai Candra; Lola Oktavia
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 3 No. 6 (2023): Juni 2023
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v3i6.810

Abstract

One of the many media utilized on the internet is websites. Inadequate website performance, an abundance of irrelevant material, an unappealing website design, confusing navigation menus, and several other issues that influence website quality are issues that are frequently observed on websites. A non-profit organization called Rumah Tahfizh Donation operates a website with the domain donasirumahtahfizh.com that serves as a source of information for both website visitors and donors. The lack of website visitors is a problem Rumah Tahfizh Donation has to face. The more people who visit the website are needed so that more and more people know about the Rumah Tahfizh Donation, the more people want to donate through the Rumah Tahfizh Donation. You can use the PIECES Framework as a guide when creating the website in order to raise its quality. The PIECES Framework is a framework that has categories for dividing up issues and coming up with solutions. According to order, the classification is broken down into six groups: performance, information, economics, control, efficiency, and service. Further testing using the GTMetrix tool is required because the PIECES test has a flaw, notably the inability to acquire a load time score. Additionally, GTMetrix offers a grade that includes a score. The grade and score you receive go up the quicker the website loads
Klasifikasi Daging Sapi dan Daging Babi Menggunakan Convolutional Neural Network EfficientNet-B0 dengan Augmentasi Citra Hafez Almirza; Jasril; Suwanto Sanjaya; Lestari Handayani; Fadhilah Syafria
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 3 No. 6 (2023): Juni 2023
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v3i6.910

Abstract

The increase in counterfeit beef sales is in line with the growing demand for meat in Indonesia. Counterfeit meat, namely mixed beef and pork and pure pork sold as beef, can be distinguished using image classification. This study classifies pork, mixed, and beef using the Convolutional Neural Network (CNN) model of the EfficientNet-B0 architecture. This study uses the image augmentation method to augment the image with the aim of improving classification accuracy. The total original image is 900, while the total augmented image is 9000. The image data is divided using two data division ratios, namely 80:20 and 90:10. The highest classification accuracy results were obtained by a model using augmented images and a data division ratio of 90:10, with a combination of Adamax hyperparameter optimizer, Swish hidden activation, and a learning rate of 0.1, with an accuracy of 97.11%, precision of 97.14%, recall of 97.11%, and F1-Score of 97.11%. Meanwhile, the highest accuracy of the model using the original image is achieved by the model using a 90:10 division ratio with a combination of hyperparameter optimizer Adamax, hidden activation ReLU, and learning rate 0.01 with the results of accuracy 96.78%, precision 96.92%, recall 96.78%, and F1-Score 96.78%. The results show that the use of image augmentation methods can improve classification accuracy.
Analisis Sentimen Tanggapan Masyarakat terhadap Calon Presiden Ridwan Kamil 2024 Menggunakan Metode K-Nearest Neighbor Fatma Hayati; Ellin Haerani; Fadhilah Syafria; Elvia Budianita
Jurnal Informatika Universitas Pamulang Vol 8, No 2 (2023): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v8i2.30054

Abstract

Banyaknya berita yang beredar dalam sosial media mengenai Tanggapan Masyarakat Terhadap Calon Presiden Ridwan Kamil 2024  menggugah rasa penasaran penulis untuk memastikan seperti apakah tanggapan masyarakat mengenai calon presiden ridwan kamil, apakah menuai kesan positif atau negatif. Dengan demikian, penulis melakukan analisis sentimen pengguna twitter terhadap Tanggapan Masyarakat Terhadap Calon Presiden Ridwan Kamil 2024 yang dapat digunakan sebagai bahan evaluasi dalam menentukan kebijakan. Penulis menggunakan algoritma K-Nearest Neighbor untuk menentukan sentimen pengguna twitter dengan bantuan phyton yang populer di kalangan Data Scientist. Metode tersebut diterapkan ke 2261 data tweet dengan kata kunci “calon presiden ridwan kamil” yang dikumpulkan pada 20 Desember 2022– 30 Desember 2022, yang mana hasil data bersih dari data tersebut berjumlah 1504 data tweet.  Hasil training model membuktikan bahwa skor akurasi 88,70%, recall 96,92% , dan presisi 90,65% dengan nilai k=3.
Co-Authors Abdul Aziz Abdullah, Said Noor Abdussalam Al Masykur Adrian Maulana Adzhima, Fauzan Afriyanti, Liza Agung Syaiful Rahman Agus Buono Agustina, Auliyah Ahmad Paisal Aji Pangestu Adek Akbar, Lionita Asa Alfin Hernandes Alwaliyanto Alwis Nazir Alwis Nazir Alwis Nazir Alwis Nazir Alwis Nazir Alwis Nazir Amalia Hanifah Artya Aminuyati Andre Suarisman Aprima, Muhammad Dzaky Ariq At-Thariq Putra Baehaqi Bib Paruhum Silalahi Boni Iqbal Che Hussin, Ab Razak Darmila Dede Fadillah Deny Ardianto Devi Julisca Sari Dina Septiawati Dodi Efendi Eka Pandu Cynthia Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Hearani Ellin Haerani Elvia Budianita Faska, Ridho Mahardika Fatma Hayati Fauzan Adzim Febi Nur Salisah Febi Yanto Felian Nabila Fitra Lestari Fitri Insani Fitri Insani Fitri Wulandari Fratiwi Rahayu Gusrifaris Yuda Alhafis Gusti, Siska Kurnia Guswanti, Widya Habibi Al Rasyid Harpizon Hafez Almirza Hafsyah Hara Novina Putri Harni, Yulia Hertati Ibnu Afdhal Ihda Syurfi Iis Afrianty Iis Afrianty Ikhsan, Tomi Ikhsanul Hamdi Indrizal, Habibi Putra Inggih Permana Irma Sanela Ismail Marzuki Ismar Puadi Isnan Mellian Ramadhan Israldi, Tino Iwan Iskandar Iwan Iskandar Iwan Iskandar Iwan Iskandar Iwan Iskandar Jasril Jasril Jasril Jasril Karina Julita Khair, Nada Tsawaabul Lestari Handayani Lestari Handayani Lili Rahmawati Liza Afriyanti Lola Oktavia Lola Oktavia M Fikry M. Afif Rizky A. Ma'rifah, Laila Alfi Masaugi, Fathan Fanrita Maulana Junihardi Mawadda Warohma Mazdavilaya, T Kaisyarendika Mhd. Kadarman Mori Hovipah Mori Hovipah Morina Lisa Pura Muhammad Affandes Muhammad Alvin Muhammad Fahri Muhammad Fikry Muhammad Hanif Abdurrohman Muhammad Ichsanul Bukhari Muhammad Irsyad Muhammad Syafriandi, Muhammad Muhammad Taufiq Muhammad Yusril Haffandi Muhammad Yusuf Fadhillah Mulyono, Makmur Muslimin, Al’hadiid Nabyl Alfahrez Ramadhan Amril Nailatul Fadhilah Nazir, Alwis Nazruddin Safaat H Negara, Benny Sukma Neni Sari Putri Juana Nesdi Evrilyan Rozanda Nining Nur Habibah Novriyanto Novriyanto Nurainun Nurainun Okfalisa Okfalisa Permata, Rizkiya Indah Pizaini Pizaini Puspa Melani Almahmuda Putra, Fiqhri Mulianda Putri Mardatillah Putri, Widya Maulida Rahmad Abdillah Rahmad Abdillah Rahmad Kurniawan Rahmadhani, R. Raja Sultan Firsky Ramadhan, Aweldri Ramadhan, Muhammad Ilham Ramadhani, Siti Reski Mai Candra Reski Mai Candra Reski Mai Candra Reski Mei Candra Riska Yuliana Roni Salambue Said Nanda Saputra Satria Bumartaduri Silfia Silfia Siti Ramadhani Siti Sri Rahayu Suswantia Andriani Suwanto Sanjaya Syaputra, Muhammad Dwiky Teddie Darmizal Vitriani, Yelvi Wulandari, Fitri Yaskur Bearly Fernandes Yusra, Yusra Yusril Hidayat Zabihullah, Fayat Zulastri, Zulastri