Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Electrical Engineering and Computer (JEECOM)

Deteksi Kantuk Pengendara Roda Empat Menggunakan Haar Cascade Classifier Dan Convolutional Neural Network Cahya AJi Saputra; Danang Erwanto; Putri Nur Rahayu
Journal of Electrical Engineering and Computer (JEECOM) Vol 3, No 1 (2021)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v3i1.1510

Abstract

Salah satu masalah kesehatan yang termasuk dalam penyakit tidak menular adalah kecelakaan lalu lintas. Kecelakaan lalu lintas memiliki dampak negatif seperti kerugian materi, cacat fisik, dan kematian sehingga dapat mempengaruhi derajat kesehatan masyarakat. Rasa kantuk saat berkendara merupakan salah satu kondisi yang tidak jarang diabaikan oleh para pengendara kendaraan bermotor dan merupakan salah satu hal yang menyebabkan terjadinya kecelakaan, terutama ketika berkendara dalam jarak yang cukup jauh. Kejadian mengantuk atau tertidur dalam waktu beberapa detik tersebut adalah microsleep. Pengemudi kendaraan bermotor sangan sensitif terhdap microsleep karena faktor kelelahan fisik selama mengemudi. Durasi microsleep sangat singkat yaitu diantara 3 detik hingga 5 detik, justru ada yang memiliki durasi sampai 10 detik. Penelitian ini mengembangkan pengolahan citra digital untuk mendeteksi kantuk pada pengendara mobil menggunakan metode pengenalan obyek Haar Cascade Classifier dan klasifikasi menggunakan Convolutional Neural Network. Masukan citra secara real-time pada sistem didapat dari kamera yang dipasang didepan pengemudi. Keluaran dari sistem terdapat suara alarm untuk peringatan bahwa pengendara sedang berada pada posisi mengantuk atau tertidur. Sistem dapat mendeteksi berbagai jenis-jenis mata dengan tingkat keberhasilan sebesar 100%. Akurasi rata-rata yang diperoleh untuk mendeteksi mata terbuka dan tertutup dengan jarak 30 – 50 Cm adalah 95,4%. Sedangkan akurasi rata-rata untuk mendeteksi kantuk adalah 93.9%. Rata-rata waktu komputasi sistem ini adalah 0.1069 detik yang akan mempercepat dalam pendeteksian kantuk.
Klasifikasi Kualitas Citra Kedelai Hitam (Malika) Menggunakan Metode K-Nearest Neighbor Eka Rahayu Septiana; Farrady Alif Fiolana; Danang Erwanto
Journal of Electrical Engineering and Computer (JEECOM) Vol 4, No 2 (2022)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v4i2.4469

Abstract

Kedelai hitam dengan nama latin (Glycine max (L.) Merrill) merupakan tanaman asli Asia yang sangat cocok ditanam di wilayah tropis seperti Indonesia. Kedelai merupakan tanaman pangan yang dapat diolah menjadi beberapa olahan, salah satunya diolah menjadi kecap. Penggunaan metode manual masih memiliki kekurangan salah satunya, biaya yang digunakan dalam pemilahan biji kedelai relatif besar yang diakibatkan karena dalam metode pemilahan secara manual dibutuhkan tenaga kerja yang banyak. Untuk itu, perlu adanya metode klasifikasi secara otomatis untuk mengatasi kekurangan dari metode manual. Dengan menerapkan metode klasifikasi K-Nearest Neighbor berdasarkan ciri warna dan bentuk, diharapkan mampu mengklasifikasi kedelai hitam (Malika) secara otomatis sehingga dapat menekan biaya yang digunakan pada metode manual. Dengan ekstraksi warna menggunakan histogram warna dan bentuk menggunakan parameter axis major, axis minor, keliling, area. Pada penelitian ini menggunakan metode penelitian eksperimen merupakan metode sistematis guna membangun hubungan yang mengandung fenomena sebab akibat. Pada penelitian ini menggunakan masukan citra dengan jumlah citra 500 biji malika dengan 250 citra malika baik dan 250 citra malika jelek, serta terdiri dari citra traning 400 citra dan citra testing 100. Berdasarkan hasil penujian, dilakukan uji coba tingkat keakurasian K dari K = 1 sampai K = 40. Didapatkan akurasi tertinggi pada K = 5 sebesar 91% dan akurasi terendah pada K = 1 sebesar 87%. Pengujian terhadap penelitian ini dilakukan menggunakan 20 citra input menggunakan rincian 10 input uji malika baik, 10 citra input uji malika jelek. Dengan hasil klasifikasi mampu membedakan atau memberi label biji malika baik dan jelek. Berdasrkan penelitian yang telah dilakukan, dapat disimpulkan bahwa algoritma K-Nearest Neighbor bisa membantu mengklasifikasi biji kedelai hitam malika baik dan jelek.
Convolutional Neural Network untuk Klasifikasi Batik Tenun Ikat Bandar Berdasarkan Fitur Warna dan Tekstur Mohammad Atif Faiz Muthrofin; Danang Erwanto; Iska Yanuartanti
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 1 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i1.8060

Abstract

Tenun Ikat Bandar Kediri adalah salah satu jenis batik berupa kain yang ditenun dan diberi suatu pola dan motif pada teksturnya menggunakan suatu mesin tenun kayu tradisional. Pola dan motif pada batik tenun ikat sangat bervariasi tergantung pada rumah produksinya. Biasanya setiap rimah produksi memiliki suatu ciri khas khusus pada pola dan motifnya. Banyaknya pola dan motif tersebut akan menjadikan masyarakat sulit mengenali dan mempelajari ciri visual Tenun Ikat tersebut sehingga bila ada suatu sistem yang mempelajari pola dan motif tersebut maka akan sangat membantu masyarakat. Sistem klasifikasi yang dibuat pada penelitian ini mengimplementasikan algoritma Convolutional Neural Network (CNN) dengan ekstraksi tekstur Tenun menggunakan fitur Gray Level Cooccurence Matrix (GLCM) dan ekstraksi warna menggunakan fitur Color Co-occourrence Matrix (CCM). Pada penelitian ini menggunakan dataset sebanyak 125 citra gambar dari 5 motif batik pada suatu rumah produksi tenun ikat dengan proporsi setiap pola yang seimbang. Hasil dari penelitian ini menunjukkan bahwa rata-rata akurasi dari setiap pengujian mencapai angka 0,94, ini menunjukkan bahwa metode yang dimaksudkan telah dapat melakukan klasifikasi dengan baik.