Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Infolitika Journal of Data Science

ANFIS-Based QSRR Modelling for Kovats Retention Index Prediction in Gas Chromatography Idroes, Rinaldi; Noviandy, Teuku Rizky; Maulana, Aga; Suhendra, Rivansyah; Sasmita, Novi Reandy; Muslem, Muslem; Idroes, Ghazi Mauer; Jannah, Raudhatul; Afidh, Razief Perucha Fauzie; Irvanizam, Irvanizam
Infolitika Journal of Data Science Vol. 1 No. 1 (2023): September 2023
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/ijds.v1i1.73

Abstract

This study aims to evaluate the implementation and effectiveness of the Adaptive Neuro-Fuzzy Inference System (ANFIS) based Quantitative Structure Retention Relationship (QSRR) to predict the Kovats retention index of compounds in gas chromatography. The model was trained using 340 essential oil compounds and their molecular descriptors. The evaluation of the ANFIS models revealed promising results, achieving an R2 of 0.974, an RMSE of 48.12, and an MAPE of 3.3% on the testing set. These findings highlight the ANFIS approach as remarkably accurate in its predictive capacity for determining the Kovats retention index in the context of gas chromatography. This study provides valuable perspectives on the efficiency of retention index prediction through ANFIS-based QSRR methods and the potential practicality in compound analysis and chromatographic optimization.
An Implementation of Hybrid CNN-XGBoost Method for Leukemia Detection Problem Hidayat, Taufiq; Hadinata, Edrian; Damanik, Irfan Sudahri; Vikki, Zakial; Irvanizam, Irvanizam
Infolitika Journal of Data Science Vol. 1 No. 1 (2023): September 2023
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/ijds.v1i1.87

Abstract

Leukemia is a blood cancer in which blood cells become malignant and uncontrolled. It can cause damage to the function of the body's organs. Several machine learning methods have been used to automatically detect biomedical images, including blood cell images. In this study, we utilized a hybrid machine learning method, called a hybrid Convolutional Neural Network-eXtreme Gradient Boosting (CNN-XGBoost) method to detect leukemia in blood cells. The hybrid method combines two machine learning methods. We use CNN as the basic classifier and XGBoost as the main classification method. The aim of this methodology was to assess whether incorporating the basic classification method would lead to an enhancement in the performance of the main classification model. The experimental findings demonstrated that the utilization of XGBoost as the main classifier led to a marginal increase in accuracy, elevating it from 85.32% to 85.43% compared to the basic CNN classification. This research highlights the potential of hybrid machine learning approaches in biomedical image analysis and their role in advancing the early diagnosis of leukemia and potentially other medical conditions.
Optimizing Geothermal Power Plant Locations in Indonesia: A Multi-Objective Optimization on The Basis of Ratio Analysis Approach Rahman, Isra Farliadi; Misbullah, Alim; Irvanizam, Irvanizam; Yusuf, Muhammad; Maulana, Aga; Marwan, Marwan; Dharma, Dian Budi; Idroes, Rinaldi
Infolitika Journal of Data Science Vol. 2 No. 1 (2024): May 2024
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/ijds.v2i1.184

Abstract

As the global energy landscape shifts towards sustainable sources, geothermal energy emerges as a pivotal renewable resource, particularly in regions with abundant geothermal potential like Indonesia. This study focuses on Mount Seulawah in Aceh Province, a region rich in geothermal resources, to optimize the selection of geothermal power plant (GPP) sites using the Multi-Objective Optimization on the Basis of Ratio Analysis (MOORA) method. Our approach integrates environmental, technical, and accessibility criteria, including distance to settlements, land slope, proximity to fault lines and heat sources, and road access. By employing a structured decision matrix and applying MOORA, we systematically evaluated and ranked potential sites based on their suitability for GPP development. The results highlight the site at Ie Brôuk as the most optimal due to its minimal environmental impact and superior geological and accessibility conditions. This study not only contributes to the strategic deployment of geothermal resources in Indonesia but also provides a replicable model for other regions with similar geothermal potentials, emphasizing the importance of a balanced and informed approach to renewable energy site selection.
Backpropagation Neural Network-Based Prediction of Kovats Retention Index for Essential Oil Compounds Safhadi, Aulia Al-Jihad; Noviandy, Teuku Rizky; Irvanizam, Irvanizam; Suhendra, Rivansyah; Karma, Taufiq; Idroes, Rinaldi
Infolitika Journal of Data Science Vol. 2 No. 1 (2024): May 2024
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/ijds.v2i1.197

Abstract

The identification of chemical compounds in essential oils is crucial in industries such as pharmaceuticals, perfumery, and food. Kovats Retention Index (RI) values are essential for compound identification using gas chromatography-mass spectrometry (GC-MS). Traditional RI determination methods are time-consuming, labor-intensive, and susceptible to experimental variability. Recent advancements in data science suggest that artificial intelligence (AI) can enhance RI prediction accuracy and efficiency. However, the full potential of AI, particularly artificial neural networks (ANN), in predicting RI values remains underexplored. This study develops a backpropagation neural network (BPNN) model to predict the Kovats RI values of essential oil compounds using five molecular descriptors: ATSc1, VCH-7, SP-1, Kier1, and MLogP. We trained the BPNN on a dataset of 340 essential oil compounds and optimized it through hyperparameter tuning. We show that the optimized BPNN model, with an epoch count of 100, a learning rate of 0.1, a hidden layer size of 10 neurons, and the ReLU activation function, achieves an R² value of 0.934 and a Root Mean Squared Error (RMSE) of 76.98. These results indicate a high correlation between predicted and actual RI values and a low average prediction error. Our findings demonstrate that BPNNs can significantly improve the efficiency and accuracy of compound identification, reducing reliance on traditional experimental methods.
Artificial Neural Network–Particle Swarm Optimization Approach for Predictive Modeling of Kovats Retention Index in Essential Oils Kurniadinur, Kurniadinur; Noviandy, Teuku Rizky; Idroes, Ghazi Mauer; Ahmad, Noor Atinah; Irvanizam, Irvanizam; Subianto, Muhammad; Idroes, Rinaldi
Infolitika Journal of Data Science Vol. 2 No. 2 (2024): November 2024
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/ijds.v2i2.220

Abstract

The Kovats retention index is a critical parameter in gas chromatography used for the identification of volatile compounds in essential oils. Traditional methods for determining the Kovats retention index are often labor-intensive, time-consuming, and prone to inaccuracies due to variations in experimental conditions. This study presents a novel approach combining Artificial Neural Networks (ANN) with Particle Swarm Optimization (PSO) to predict the Kovats retention index of essential oil compounds more accurately and efficiently. The ANN-PSO hybrid model leverages the strengths of both techniques: the ANN's capacity to model complex nonlinear relationships and PSO's capability to optimize hyperparameters by finding the global optimum. The model was trained using a dataset of 340 essential oil compounds with molecular descriptors, with the performance evaluated based on Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). Results indicate that a simpler ANN configuration with one hidden neuron achieved the lowest RMSE (80.16) and MAPE (5.65%), suggesting that the relationship between the molecular descriptors and the Kovats retention index is not overly complex. This study demonstrates that the ANN-PSO model can serve as an effective tool for predictive modeling of the Kovats retention index, reducing the need for experimental procedures and improving analytical efficiency in essential oil research.
A Convolutional Neural Network Model for Mushroom Toxicity Recognition Irvanizam, Irvanizam; Subianto, Muhammad; Jamil, Muhammad Salsabila
Infolitika Journal of Data Science Vol. 3 No. 2 (2025): November 2025
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/ijds.v3i2.359

Abstract

Mushroom poisoning remains a public health concern, often caused by misidentifying toxic species that visually resemble edible ones. This study investigates the feasibility of using a Convolutional Neural Network (CNN) to classify five mushroom species, Amanita caesarea, Amanita phalloides, Cantharellus cibarius, Omphalotus olearius, and Volvariella volvacea into toxic and non-toxic categories based on image data. A dataset of 137 images was collected and preprocessed through resizing, normalization, and data augmentation. A modified AlexNet-based CNN was trained and evaluated using accuracy, precision, recall, and F1-score. The best-performing model achieved a validation accuracy of 0.40, indicating limited discriminative capability. These findings highlight that the dataset size is insufficient for training a CNN from scratch and that the model cannot reliably distinguish species with subtle morphological differences. The study concludes that larger datasets, improved image quality, and transfer learning approaches are essential for achieving practical and deployable mushroom classification performance.