Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Applied Materials and Technology

High-Performance Aqueous Electrolyte Symmetrical Supercapacitor using Porous Carbon Derived Cassava Peel Waste Erman Taer; Harahap Eva Wahyuni; Apriwandi Apriwandi; Taslim Rika
Journal of Applied Materials and Technology Vol. 4 No. 1 (2022): September 2022
Publisher : AMTS and Faculty of Engineering - Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/Jamt.4.1.1-10

Abstract

Electrolytes have been generally recognized as one of the most important components in enhancing the electrochemical performance of supercapacitors. On the other hand, aqueous electrolytes are considered prime candidates for the development of the next generation of symmetric supercapacitors due to their low-cost, environmentally friendly, high ionic conductivity, fine ionic size, and high capacitance. Herein, the symmetrical supercapacitor of the sustainable porous carbon-based electrode material was confirmed through various aqueous electrolytes consisting of neutral, basic, and acidic Na2SO4, KOH, and H2SO4. Activated carbon is obtained from high potential biomass sources of cassava peel waste. Activated carbon synthesis was performed with a comprehensive approach in order to obtain abundant pore structure, high porosity, and improved wettability through a combination of high-temperature chemical and physical activation. in addition, the electrode material is designed to resemble a solid disc without the addition of a synthetic binder. The evaluation of the disc dimensions showed high porosity in the obtained activated carbon. Furthermore, the symmetrical supercapacitor of the optimized electrode material exhibit excellent specific capacitances of 112, 150, and 183 F g-1 at 1 mV s-1 in the electrolytes Na2SO4, KOH, and H2SO4, respectively. In addition, the highest rate capability of 70% was confirmed in the H2SO4 acid electrolyte. Moreover, their coulombic efficiency can be maintained around 89% with low equivalent series resistance 0.21-0.42 ?. Therefore, the activated carbon-based supercapacitor symmetric cell device from cassava peel shows high performance for developing high-performance supercapacitor applications with guaranteed stability in aqueous electrolytes.
Self-Doped Porous Carbon Derived From Acacia Plantation Residues for Green-Supercapacitor in Sustainable Energy Applications Apriwandi, Apriwandi; Deniza, Rindhu Nabila; Martin, Awaludin; Julnaidi, Julnaidi; Taslim, Rika; Taer, Erman
Journal of Applied Materials and Technology Vol. 7 No. 1 (2025): September 2025
Publisher : AMTS and Faculty of Engineering - Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/Jamt.7.1.1-10

Abstract

To improve bio-organic-carbon quality for supercapacitors, consider using dual or more heteroatom for more profitable carbon-chain doping. Developing suitable sources and preparation strategies is challenging but essential. Herein, we introduce a potential carbon source derived from acacia plantation residues, doped with boron, oxygen, and phosphorus. The pore structure of this carbon material can be precisely tuned to exhibit a well-defined hierarchical arrangement of micro-, meso-, and macropores through a low-ratio of phosphoric acid (H?PO?) impregnation method combined with dual-environment (N2 and CO2) vertical pyrolysis in one step integrated. The resulting material displays a confirmed hierarchical morphology with a hierarchical transformation into tunnel pores, in specific surface area of 521.70 m²/g which contributed to high charge storage and deliverability. Additionally, the material contains significant levels of boron (0.93%), oxygen (9.19%), and phosphorus (0.34%), facilitating a reversible Faradic reaction in the working electrode. Consequently, optimized-electrode achieves a specific capacitance of 198 F/g at 1 A/g in H?SO? electrolyte. In a two-electrode system, records energy density of 14 Wh/kg (1 A/g) at a maximum power density of 670 W/kg (10 A/g). These findings suggest that the natural incorporation of boron, oxygen, and phosphorus enhances both the activity and the hierarchical pore structure of carbon derived from acacia plantation residues.