Cavendish bananas are one of the most widely consumed tropical fruits in Indonesia due to their sweet taste and high nutritional content. However, as they ripen, the sugar content in bananas increases, which can be a problem for diabetics. To help diabetics choose bananas with the right level of ripeness, this study developed a Cavendish banana ripeness classification model using artificial intelligence technology, namely the ResNet50 Convolutional Neural Network (CNN) architecture. The banana data is divided into five ripeness categories: green, yellowish green, yellow, spotted yellow, and spotted brownish yellow. The model was trained with two approaches, with and without data augmentation, using two types of training algorithms (optimizers), namely Adam and SGD, as well as a k-fold cross-validation method to ensure accurate results. The results showed that the ResNet50 model produced the highest accuracy of 98% when trained using data augmentation and the Adam optimizer with a learning rate setting of 0.0001.