Claim Missing Document
Check
Articles

Found 25 Documents
Search

STUDENTS’ PERCEPTION OF BRITISH AND AMERICAN CULTURES IN SENIOR HIGH SCHOOL INTERLANGUAGE ENGLISH TEXTBOOK Patimah, Euis; Subki, Ahmad
English Education and Applied Linguistics Journal (EEAL Journal) Vol. 5 No. 1 (2022): March (EEAL Journal)
Publisher : IPI Garut Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31980/eeal.v5i1.66

Abstract

Awareness of the existence of foreign cultures in Indonesia in various fields, especially in the field of education, that the influence of foreign cultures can have positive and negative effects on school students. What is meant by cultural awareness is Cultural Awareness: An introduction to the nuances of one's own culture and that of other cultures. CulturalCompetence: The ability of individuals to use academic, experiential, and interpersonal skills to enhance their understanding and appreciation of cultural differences and similarities within, between, and between groups. This study aims to understand cultural awareness and the impact of foreign culture on students in schools. Qualitative methods used through observation and interviews and semi- structured observation. The participants inthis study were six twelfth grade students consisting of three girls and three boys at ahigh school in Garut. Findings found in this study are the perceptions of students who study English Interlanguage books, namelythat there are many learning cultures that can be imitated because they bring positive things and improve student learning values and can also motivate students to be morecritical of cultural awareness
Analisis Rekaman Suara pada Aplikasi Magic Call dengan Metode Forensik Audio untuk Mendapatkan Bukti Digital Subki, Ahmad; Karim, Muh Nasirudin; Imran, Bahtiar
Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen Vol 13 No 2 (2023): September 2023
Publisher : STMIK Palangkaraya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33020/saintekom.v13i2.373

Abstract

Audio forensics is a method used to analyze sound or audio recordings. Voice or audio recording is one of the digital evidence that is easy to manipulate. One way to manipulate sound is to use magic call. Magic call has several levels of character voices that can be used such as cartoon, children, male and female voices. The analysis of the original voice recording with the magic voice recording is done by comparing the magic call sound and the voice with the original voice recording. The purpose of this study was to determine the voice recording produced by magic call from the magic call applications. As for the method used in this research is audio forensics, research on magic call sound using audio has never been done before. The results of this study indicate that the analysis of magic call sound recordings can be done using formant analysis and spectrograms, while pitch analysis on magic call voice recordings cannot be used. The formant and spectrogram values on magical voice recordings can still be searched because the original voice recordings have characteristics that are still attached to the magic recording calls.
Combination of gray level co-occurrence matrix and artificial neural networks for classification of COVID-19 based on chest X-ray images Imran, Bahtiar; Delsi Samsumar, Lalu; Subki, Ahmad; Zaeniah, Zaeniah; Salman, Salman; Rijal Alfian, Muhammad
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i2.pp1625-1631

Abstract

This research uses the gray level co-occurrence matrix (GLCM) and artificial neural networks to classify COVID-19 images based on chest X-ray images. According to previous studies, there has never been a researcher who has integrated GLCM with artificial neural networks. Epochs 10, 30, 50, 70, 100, and 120 were used in this research. The total number of data points used in this investigation was 600, divided into 300 normal chests and 300 COVID-19 data points. Epoch 10 had 91% accuracy, epoch 30 had 91% accuracy, epoch 50 had 92% accuracy, epoch 70 had 91% accuracy, epoch 100 had 92% accuracy, and epoch 120 had 90% accuracy in categorization. As indicated by the results of the classification tests, combining GLCM and artificial neural networks can produce good results; a combination of these methods can yield a classification for COVID-19.
DESIGNING GEOGRAPHIC INFORMATION SYSTEM CULINARY TOUR LOCATION IN THE WEST LOMBOK REGION MOBILE-BASED APPLICATION Erniwati, Surni; Subki, Ahmad
Jurnal Pilar Nusa Mandiri Vol 16 No 2 (2020): Pilar Nusa Mandiri : Journal of Computing and Information System Publishing Peri
Publisher : LPPM Universitas Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/pilar.v16i2.1663

Abstract

Lombok Island is an island in West Nusa Tenggara which is separated by the Lombok and Bali straits to the west and Alas Strait to the east of Sumbawa. The tourism potential in the West Lombok region is currently in great demand by local and foreign tourists because the tourist objects offered in the West Lombok region are very diverse, such as natural, religious, cultural, and culinary tours. Many restaurants offer culinary but often when indicating the location of a culinary, the information obtained is sometimes limited to street names and location characteristics. Meanwhile, the clarity of where the culinary location is not mapped in detail. So far, culinary connoisseurs use manual methods to find culinary locations such as Instagram, Facebook, and Blogspot. For tourists, this manual method is less effective because it consumes a lot of time and address information for getting to culinary locations is inadequate. One solution that can be used to obtain information is a geographic information system (GIS). The goal is to make it easier for culinary lovers to find culinary tourism locations. The research method used in this research is the Research and Development research method with preliminary stages, data and information collection, interviews and observations, system design with modeling, design validation, design revision, development, limited trial, limited trial revision, trial field, revision of field trials, dissemination, and implementation.
DATA MINING USING RANDOM FOREST, NAÏVE BAYES, AND ADABOOST MODELS FOR PREDICTION AND CLASSIFICATION OF BENIGN AND MALIGNANT BREAST CANCER Imran, Bahtiar; Hambali, Hambali; Subki, Ahmad; Zaeniah, Zaeniah; Yani, Ahmad; Alfian, Muhammad Rijal
Jurnal Pilar Nusa Mandiri Vol 18 No 1 (2022): Pilar Nusa Mandiri : Journal of Computing and Information System Publishing Peri
Publisher : LPPM Universitas Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/pilar.v18i1.2912

Abstract

This study predicts and classifies benign and malignant breast cancer using 3 classification models. The method used in this research is Random Forest, Naïve Bayes and AdaBoost. The prediction results get Random Forest = 100%, Naïve Bayes = 80% and AdaBoost = 80%. Results using Test and Score with Number of Folds 2, 5 and 10. Number of Folds 2 Random Forest model Accuracy = 95%, Precision = 95% and Recall = 95%, Naïve Bayes Accuracy = 93%, Precision = 93% and Recall 93%, AdaBoost Accuracy = 90%, Precision = 90% and Recall = 90%. With Number of Folds 5 with Random Forest = 96%, Precision = 96% and Recall 96%. Naïve Bayes Accuracy value = 94%, Precision = 94% and Recall = 94%, AdaBoost Accuracy value = 93%, Precision = 93% and Recall = 93%. With Number of Folds 10 Random Forest model = 96%, Precision = 96% and Recall 96%. Naïve Bayes Accuracy value = 94%, Precision = 94% and Recall = 94%, AdaBoost Accuracy value = 92%, Precision = 92% and Recall = 92%. Of the 3 models used, Random Forest got the best classification results compared to the others.
RANCANG BANGUN ALAT PEMISAH SAMPAH CERDAS BERBASIS INTERNET OF THINGS Gunawan, Tony; Subki, Ahmad; Akbar, Ardiyallah; Samsumar, Lalu Delsi; Supardianto, Supardianto
Journal of Computer Science and Information Technology Vol. 1 No. 4 (2024): September
Publisher : Yayasan Nuraini Ibrahim Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70248/jcsit.v1i4.1279

Abstract

Jumlah sampah yang meningkat di kota-kota menimbulkan tantangan yang signifikan bagi sistem pengelolaan sampah. Sampah yang dipisahkan secara manual biasanya kurang efisien dan membutuhkan banyak tenaga kerja. Dengan merancang dan mengembangkan sebuah model alat pemisah sampah cerdas yang berbasis Internet of Things (IoT), penelitian ini berusaha mengatasi masalah ini. Dengan menggunakan mikrokontroler Arduino Uno dan NodeMCU ESP8266, alat ini dilengkapi dengan sensor infrared untuk mendeteksi sampah, sensor proximity induktif untuk menentukan jenis sampah, dan sensor ultrasonik untuk memantau kapasitas tempat sampah. Kompartemen tempat sampah digerakkan oleh servo motor. Untuk pemantauan jarak jauh, data sensor diproses dan dikirim melalui aplikasi Blynk dan Telegram. Hasil penelitian menunjukkan bahwa sistem ini memiliki kemampuan untuk membedakan sampah logam dan non-logam secara otomatis dan untuk memberikan notifikasi ketika tempat sampah penuh. Penggunaan teknologi Internet of Things (IoT) dalam pengelolaan sampah diharapkan dapat mempercepat proses daur ulang secara lebih efisien serta mendorong peningkatan kesadaran masyarakat akan pentingnya pengelolaan sampah yang lebih baik.
Perancangan Sistem IoT Monitoring dan Smart Feed pada Ikan Hias Kristy, Rhama Aziz Aulia; Subki, Ahmad; Zulpahmi, M; Samsumar, Lalu Delsi
Journal of Computer Science and Informatics Engineering Vol 3 No 4 (2024): October
Publisher : Ali Institute of Research and Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55537/cosie.v3i4.923

Abstract

Pemberian pakan otomatis dalam pemeliharaan ikan hias menjadi solusi penting untuk meningkatkan efisiensi dan kesehatan ikan. Penelitian ini mengembangkan sistem berbasis Internet of Things (IoT) yang mengintegrasikan sensor dan aktuator untuk mengotomatiskan proses pemberian pakan. Sistem ini dilengkapi dengan sensor suhu dan turbidity yang memantau kualitas air secara real-time, sementara aktuator motor servo mengatur dosis dan waktu pemberian pakan otomatis. Data dari sensor dikirim ke platform IoT untuk pemantauan jarak jauh, memungkinkan peternak untuk mengawasi kondisi akuarium tanpa harus selalu hadir. Hasil pengujian menunjukkan bahwa sistem ini efektif dalam memberikan pakan secara tepat waktu dan dengan dosis yang sesuai, yang berkontribusi pada kesehatan dan pertumbuhan ikan hias. Dengan penerapan teknologi IoT ini, proses pemeliharaan ikan hias menjadi lebih efisien, mengurangi beban kerja peternak, dan meminimalkan risiko kesalahan dalam pemberian pakan. Diharapkan, inovasi ini dapat meningkatkan produktivitas dalam budidaya ikan hias dan memberikan kemudahan bagi para peternak.
Crack Detection of Concrete Surfaces with A Combination of Feature Extraction and Image-Based Backpropagation Artificial Neural Networks Wahyudi, Erfan; Imran, Bahtiar; Subki, Ahmad; Zaeniah, Zaeniah; Samsumar, Lalu Delsi; Salman, Salman
ILKOM Jurnal Ilmiah Vol 16, No 3 (2024)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v16i3.2249.228-235

Abstract

Concrete surface imperfections can signify a structure undergoing severe degradation. It deteriorates when concrete is exposed to elemental reactions such as fire, chemicals, physical damage, and calcium leaching. Due to its structural degradation, concrete deterioration poses a risk to the surrounding environment. Structural buildings can collapse due to severe concrete decline. To prevent concrete cracks early, it is imperative to identify the concrete surface. This requires the development of a technique for detecting the image-based concrete surface. One way to detect concrete surfaces is to create artificial neural networks. The purpose of this study is to combine feature extraction and artificial neural networks to detect cracks in concrete surfaces. The data used is concrete surface image data divided into two classes, namely cracked class and uncracked class. The total data is 600 data points, 300 data points, and 300 data points. The technique used is feature extraction from GLCM and Backpropagation Artificial Neural Network. Test results using epoch five show 95% accuracy, epoch 10 shows 95% results, epoch 100 shows 83% accuracy, and epoch 250 shows 73% results. The test results that have been carried out show a decrease in lower accuracy results when the epoch is determined to be higher. The results of this study epoch that shows the highest accuracy results are epoch 5 with 95% accuracy and epoch 10 with 95% accuracy.
SISTEM KEAMANAN PINTU RUMAH MENGGUNAKAN SIDIK JARI DAN KEYPAD BERBASIS INTERNET OF THINGS Zaenaldi, Firki; Subki, Ahmad; Akbar , Ardiyallah; Samsumar, Lalu Delsi; Supardianto, Supardianto
Journal of Data Analytics, Information, and Computer Science Vol. 1 No. 4 (2024): Oktober
Publisher : Yayasan Nuraini Ibrahim Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70248/jdaics.v1i4.1353

Abstract

Sistem keamanan rumah menjadi aspek penting dalam menjaga keselamatan dan privasi penghuni. Dalam era teknologi yang terus berkembang, sistem keamanan berbasis Internet of Things (IoT) menawarkan solusi inovatif dan efektif. Penelitian ini bertujuan untuk merancang sistem keamanan pintu rumah menggunakan teknologi sidik jari dan keypad yang terhubung dengan IoT. Sistem ini menggunakan sensor sidik jari, keypad, NodeMCU ESP32, LCD, Arduino Nano, solenoid door lock, dan modul relay. Perangkat lunak yang digunakan meliputi Arduino IDE dan Bot Telegram. Hasil penelitian menunjukkan bahwa sistem yang dirancang mampu meningkatkan keamanan rumah dengan memberikan akses hanya kepada individu yang terdaftar sidik jarinya atau memiliki kode akses yang benar.
Peningkatan Kualitas SDM Kelompok Sadar Wisata untuk Penguatan Potensi dan Promosi Desa Berbasis Digital Dwinita Arwidiyarti; Ahmad Subki; Agus Hermanto
Sasambo: Jurnal Abdimas (Journal of Community Service) Vol. 6 No. 4 (2024): November
Publisher : Lembaga Penelitian dan Pemberdayaan Masyarakat (LITPAM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36312/sasambo.v6i4.2136

Abstract

Program penguatan potensi dan promosi Desa Wisata Sesaot bertujuan untuk meningkatkan kapasitas Kelompok Sadar Wisata (Pokdarwis) dalam memanfaatkan media digital sebagai sarana promosi. Metode pelaksanaan program ini melibatkan workshop dan pelatihan berbasis partisipatif, yang mencakup materi pemasaran digital, pembuatan konten kreatif, pengelolaan media sosial, serta penggunaan aplikasi berbasis Android. Mitra kegiatan terdiri dari 15 anggota Pokdarwis berusia 25–35 tahun. Hasil program menunjukkan peningkatan signifikan pada kemampuan mitra dalam pemasaran digital, tercermin dari nilai rata-rata pre-test sebesar 59,7 yang meningkat menjadi 84 pada post-test, dengan rata-rata N-Gain 0,68 (kategori sedang hingga tinggi). Selain itu, Pokdarwis berhasil mengelola akun media sosial untuk mempromosikan objek wisata dan produk UMKM, serta meluncurkan aplikasi Desa Wisata berbasis Android yang memudahkan wisatawan untuk mendapatkan informasi, membeli tiket, dan berbelanja produk lokal secara online. Kesimpulannya, program ini efektif dalam meningkatkan kapasitas mitra serta mendukung pencapaian pembangunan berkelanjutan. Disarankan agar pemerintah desa memberikan dukungan berkelanjutan untuk memastikan komitmen pengelola dalam mengoptimalkan media digital sebagai sarana promosi. Improving the Quality of Human Resources of Tourism Awareness Groups to Strengthen Potential and Promote Digital-Based Villages  The program to enhance the potential and promotion of Desa Wisata Sesaot aims to strengthen the capacity of the local tourism awareness group (Pokdarwis) in utilizing digital media for promotion. The program's implementation methods involved participatory workshops and training sessions, covering digital marketing, creative content creation, social media management, and the use of Android-based applications. The program engaged 15 Pokdarwis members aged 25–35 years. The results indicated significant improvements in the participants' digital marketing skills, as reflected by an average pre-test score of 59.7, which increased to 84 in the post-test, with an average N-Gain of 0.68 (moderate to high category). Additionally, the Pokdarwis successfully managed social media accounts to promote tourist attractions and local MSME products, as well as launched an Android-based Desa Wisata application. This application provides tourists with easy access to information, online ticket purchases, and local product shopping. In conclusion, the program effectively enhanced the partners' capacity and supported sustainable development goals. It is recommended that the village government provide ongoing support to ensure the commitment of the managers in optimizing digital media as a promotional tool.