cover
Contact Name
Adi Suryadi
Contact Email
adisuryadi@eng.uir.ac.id
Phone
+62822 8389 6947
Journal Mail Official
jgeet@journal.uir.ac.id
Editorial Address
Jl. Kaharuddin Nasution No 113 Perhentian Marpoyan, Pekanbaru, Riau 28284
Location
Kota pekanbaru,
Riau
INDONESIA
Journal of Geoscience, Engineering, Environment, and Technology
Published by Universitas Islam Riau
ISSN : 2503216X     EISSN : 25415794     DOI : 10.25299
JGEET (Journal of Geoscience, Engineering, Environment and Technology) published the original research papers or reviews about the earth and planetary science, engineering, environment, and development of Technology related to geoscience. The objective of this journal is to disseminate the results of research and scientific studies which contribute to the understanding, development theories, and concepts of science and its application to the earth science or geoscience field. Terms of publishing the manuscript were never published or not being filed in other journals, manuscripts originating from local and International. JGEET (Journal of Geoscience, Engineering, Environment and Technology) managed by the Department of Geological Engineering, Faculty of Engineering, Universitas Islam Riau.
Arjuna Subject : -
Articles 19 Documents
Search results for , issue "Vol. 9 No. 2 (2024): JGEET Vol 09 No 02 : June (2024)" : 19 Documents clear
Spatial and Seasonal Variation of Doline Water Hydrochemistry in West Gunungsewu Karst Area, Yogyakarta Special Region, Indonesia Listyani R.A., T.; Ridayati
Journal of Geoscience, Engineering, Environment, and Technology Vol. 9 No. 2 (2024): JGEET Vol 09 No 02 : June (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2024.9.2.6033

Abstract

The doline water hydrochemical study was conducted in the Gunungsewu karst area, Yogyakarta Special Region. The hydrogeological survey followed by doline water sampling was carried out in the Panggang and Wonosari-Baron Hydrogeological Subsystems. Ten selected doline water samples were taken, each in the dry and rainy season, for further physical/chemical testing in the laboratory. Research analysis includes hydrochemical analysis of several parameters such as pH, TDS, EC, major and minor ions content and assisted by difference and variability tests statistical analysis. The hydrochemical variations of doline water in the study area generally did not show any spatial variations, except for the EC parameter. Temporal/seasonal hydrochemical variations are apparent, as evidenced by differences in many variations of TDS, EC, major ions (Ca2+, Na+, K+, HCO3-, Cl-), and minor ions (sulfate and nitrate). In the dry season, the hydrochemical facies generally develop as Ca, Na-bicarbonate facies, while in the rainy season, doline water typically has Ca-bicarbonate facies. The hydrochemical of doline water may be influenced by groundwater.
Multiple Linear Regression Method for Thermal Maturity Prediction Based On Well Logs Wibowo, Rahmat Catur; Sarkowi, Muh; Dewanto, Ordas; Mulyatno, Bagus S; Dani, Ilham
Journal of Geoscience, Engineering, Environment, and Technology Vol. 9 No. 2 (2024): JGEET Vol 09 No 02 : June (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2024.9.2.10270

Abstract

Accurate estimation of thermal maturity is essential in characterizing a source rock, especially using vitrinite reflectance (Ro). The limitations of laboratory data related to the high cost of analysis require a special reliable method to measure the Ro value indirectly in the source rock layer. The proposed method is a continuous prediction of the value of Ro from well logs data using the Multiple Linear Regression (MLR) technique in the Palembang Sub-Basin, South Sumatra Basin. A total of 25 Ro data from 2 wells (RCW-01 and RCW-02) are available from the laboratory's core data analysis results. The Ro data varies from 0.39% to 0.76%, with an average of 0.54%. Prediction of the value of Ro is carried out using the MLR method, which is then carried out training and validation for continuous Ro. The training was carried out using one well (RCW-01) at 2287-3027 m and testing at other intervals (1848-2286 m). The results of the training show an estimation accuracy of R2 0.99, while the test results produce R2 0.81. The MLR formula in the RCW-01 well was then applied to the RCW-02 well for the validation test phase. The well RCW-02 produces a good correlation estimate equal to R2 0.85. Prediction of the value of Ro using the MLR method can be used to evaluate the source rock layer of a sedimentary basin in the form of a continuous interval.
Water and Reinforced Effects on Slope: Case Study on District Koto Panjang, Riau, Indonesia Nugroho, Soewignjo Agus; Yusa, Muhamad; Sujatmoko, Bambang; Ongko, Andarsin
Journal of Geoscience, Engineering, Environment, and Technology Vol. 9 No. 2 (2024): JGEET Vol 09 No 02 : June (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2024.9.2.12604

Abstract

This paper discussed a study case related to slope stability and its analysis. The observation and also research object was a hill side on border area between West Sumatera-Riau, Indonesia. This border area consists of numerous slopes with heterogeneous soil characteristics. This location is also susceptible for having landslides, especially on rainy season. The schemes of this research consisted of collecting samples, laboratory tests, finite element method analysis, and slope`s reinforcement planning with anchors or geosynthetic plates. The soil samples were tested on their actual condition and liquid limit condition. This purposed to predict the failures on slope. Afterwards, some reinforcement plannings need to be done. The results of this researach have shown that on existing condition, the safety factor was 1.262. If the soil reach its liquid limit, the safety factor decreased to 0.568. After the reinforcement planning was done, the safety factor went up to 1.120 and the slope stability could be maintained.
Modeling and Interpretation of Geothermal System Components Using the Gravity Method at the “X” Geothermal Ibrahim, Mochammad Malik; Utami, Pri; Raharjo, Imam Baru
Journal of Geoscience, Engineering, Environment, and Technology Vol. 9 No. 2 (2024): JGEET Vol 09 No 02 : June (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2024.9.2.13032

Abstract

Geothermal field "X" is one of the geothermal fields located in North Sulawesi Province managed by PT Pertamina Geothermal Energy. This research aims to determine the presence of geothermal system components in the subsurface using the gravity method. Gravity method data processing is processed with observational and theoretical corrections to obtain a complete Bouguer anomaly. The complete Bouguer anomaly is separated into regional and residual anomaly using the upward continuation process. The results of modeling and interpretation of residual (shallow) gravity prove the existence of 3 (three) rock layers and their density values, Post Tondano Andesite Unit layer (2,4 g/cm3), Tondano Rhyolite Unit layer (2,5 g/cm3) and Pre Tondano Andesite Unit layer (2,7 g/cm3). The results of modeling and interpretation of regional (deep) gravity evidence the existence of 3 (three) rock layers along with the rock density value, Tondano Rhyolite Unit layer (2,5 g/cm3), Pre Tondano Andesite Unit layer (2,7 g/cm3) and diorite intrusion rock layer (2,9 g/cm3). The geothermal system in the research area is composed of Post Tondano Andesite Unit as overburden rock, Tondano Rhyolite Unit as caprock, Pre Tondano Andesite Unit as reservoir rock and Diorite intrusion rock as heat source.
Magma Petrogenesis Study Based on Morphology and Texture Of Zircon Minerals: Case Study At The Causative Intrusive In The HLE Porphyry Copper-Gold Prospect, Sumbawa Island, Indonesia Fadlin; Sulistyawan, Raden Isnu Hajar; Idrus, Arifudin; Asfaro, Raden Muhammad; Nhatinombe, Hernani Vitorino; Hamzah, Wildan Nur
Journal of Geoscience, Engineering, Environment, and Technology Vol. 9 No. 2 (2024): JGEET Vol 09 No 02 : June (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2024.9.2.13248

Abstract

The zircon mineral is one of the accessory minerals within igneous rocks for its ability to resist hydrothermal and metamorphic processes. By examining their morphology and texture, zircon minerals can provide valuable insights into magma's petrogenesis, including temperature and composition. Two methods used to reach the research objectives include Petrography and SEM-CL analysis of the zircon grain from the diorite porphyry of the HLE prospect. On the basis of Petrography observation, the grain size of zircon ranges from 50 to 300 µm in size, and most have a transparent to grey color with prismatic, non-prismatic euhedral-subhedral elliptical, and non-prismatic rounded in shape. The zircon crystal typologies from the diorite porphyry are classified into S10, P2, S12, S13, S16, and S17 types, indicating the wide range of the crystallization temperature of zircon, ranging from 700 to 800 °C. The zircon from the diorite porphyry of the HLE prospect shows the medium values of pyramids typology, which is {101} = {211}. It corresponds to a medium Al/Na + K ratio (A index) value, indicating zircon as a product from the calc-alkaline magmas series. The trend of the calc-alkaline/sub-alkaline in typology suggests crustal sources mixed with mantle material. Furthermore, based on SEM-CL analysis the zircon shows dominantly oscillatory zoning with thin bands, and some grains show weak zoning in the outer core, typical of magmatic zircon. Moreover, the presence of lamellae texture of magnetite-ilmenite mineral under the scanning electron microscopy (BSE image) can be interpreted as the magma related to the high oxidizing magma.
Provenance Analysis Based On Petrographic Samples On EXIA-1 Well, Banggai Basin, East Sulawesi, Indonesia Setyawan, Reddy; Aribowo, Yoga; Kurniasih, Anis; Fahrudin; Ali, Rinal Khaidar; Najib; Ferdy; Wijaya, Ennur Kusuma; Qadaryati, Nurakhmi; Khorniawan, Wahyu Budhi; Dalimunte, Hasnan Luthfi; Ringga, Anita Galih
Journal of Geoscience, Engineering, Environment, and Technology Vol. 9 No. 2 (2024): JGEET Vol 09 No 02 : June (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2024.9.2.13367

Abstract

The structure of Exia is composed of Miocene built-up carbonates formed by shear faults. The buildup carbonate feature in the Exia prospect can be seen from the high elevation surrounded by lows with an NNE-SSW and NE-SW trending. The MA-1, SE-1, MI-1 wells are several wells in the Tiaka and Senoro Fields which are proven to have large gas reserves. Tiaka Field is located to the west of the Exia Well, while Senoro Field is to the northeast. The study used primary data from the Exia-1 well in the form of cutting samples. The wet and dry cutting samples were further processed into thin section. This thin section is then carried out for petrographic, XRD, and SEM analysis. Tomori Formation starts from the deeper environment FZ1 upwards to the shallower FZ5 –FZ6 (reef) with open marine and restricted areas. The allochem that composes the limestone at The Matindok Formation consists of red algae fragments and benthic forams which indicate the facies zone of formation in FZ 4 (slope). In the upper Mantawa Formation, it is still quite clear the presence of large forams indicating a reef association environment (FZ5-FZ6), but the presence of a large number of planktonic forams indicates a deeper depositional environment / slope, so it is possible that large forams were transported from a shallower environment. The Kintom Formation have rock provenance ranging from continental blocks in the interior of the craton to a recycled orogeny section of recycled quartz zone.
Metamorphic Complex Deformation in North Bangka Island Based on Macrostructures and Microstructures Evidences Hendrawan, Rezki; Draniswari, Windi Anarta; Wahyuni, Fitri Indah; Sapiie, Benjamin; Basuki, Nurcahyo Indro
Journal of Geoscience, Engineering, Environment, and Technology Vol. 9 No. 2 (2024): JGEET Vol 09 No 02 : June (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2024.9.2.13379

Abstract

The northern Bangka Island is composed of Pemali metamorphic complex which is indicated by the collision between Indochina and Sibumasu blocks. These features are interesting to observe because the metamorphic rocks could be recorded in some geological structures at different times. The study began by conducting field observation on Pemali Metamorphic Complex as objects. Field observation aims to collect lithological data, structural data, and oriented rock samples. The results of field pitching were processed to determine macrostructures, microstructures, and mineral distribution. The data was analyzed based on kinematic, descriptive, and deformation mechanisms to determine the deformation patterns that occurred in the study area. Field and oriented thin section data show structures and occurred in different deformation conditions. The analysis based on macrostructures and microstructures showed that the northern part of Bangka Island experienced three different deformation phases. Deformation begins with the formation of folds that are associated with collisions between Sibumasu-Indochina, followed by a second deformation that forms a fold with different verging. Both deformations are formed in the ductile zone and the brittle-ductile transition zone. The third deformation occurs when rocks have been lifted to the surface by the presence of faults, joints, and veins. The sequence of the deformation model is similar to the deformation experienced in the Bentong-Raub suture zone formed in the shear zone.
Evolution of T. simplex, Jenkins from the Middle Miocene to the Early Pliocene and its Chances of Becoming a Distinct Subspecies Pandita, Hita; Al Hussein Flower Risqy
Journal of Geoscience, Engineering, Environment, and Technology Vol. 9 No. 2 (2024): JGEET Vol 09 No 02 : June (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2024.9.2.14331

Abstract

The presence of Turritellidae fossils in rocks is very important, because they are index fossils at the levels of mollusk biostratigraphy in Indonesia. However, its use is not yet optimal, due to one of the reasons being different names for the same specimen or conversely giving the same species name to different forms. One example is Turritella simplex. This research is intended to re-identify Turritella simplex originating from two populations that have different shapes and sizes. The goal is to find out whether the two populations are the same or different species. The method used is the analysis of the similarity of the identification parameters and the similarity test of the biometric patterns. The results showed that the two populations from Cilanang and Meningten showed similar morphological identification parameters, but differen in biometric aspects. The recommendation from this research is to divide it into two different subspecies, and can be represented at different biostratigraphic levels. Both populations show an evolutionary process in terms of biometry and morphology.
Relocation Study of Flores Sea Hypocenter (Mw = 7.3) Based on Single Station Estimation Using ObsPy Khusnani, Azmi; Anggraini, Ade; Jufriansah, Adi; Zulfakriza, Zulfakriza; Pramudya, Yudhiakto; Margiono; Wae, Konsenius Wiran
Journal of Geoscience, Engineering, Environment, and Technology Vol. 9 No. 2 (2024): JGEET Vol 09 No 02 : June (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2024.9.2.14503

Abstract

One area in Indonesia that is prone to disasters is the Flores Sea area, which has the potential for earthquakes to trigger tsunamis. This is due to the location of Flores, which is in a subduction zone that originates from the collision of the Indo-Australian (South) and Eurasian plates. Inaccuracies in earthquake locations are influenced by differences in residual travel time values, mathematical solutions to location problems, and inaccuracies in the seismic velocity model used. The accuracy of determining the hypocenter of an earthquake influences the location of the earthquake source, which will later be used as a reference in appropriate earthquake disaster mitigation planning. Based on this, an analysis of earthquake hypocenter data is needed, so it is important to carry out research. This research aims to relocate the hypocenter using ObsPy with a single station. The results obtained show that the Python package, namely ObsPy, can carry out data retrieval commands through filtering, detrending, normalisation, and determining data request parameters, such as the start and end times of the desired data, location, network, and data type. This research contributes to the field of seismology because the process of determining the hypocenter requires a relatively short time. Apart from that, the accuracy obtained also provides accurate values.
Tsunami Modeling Using DEMNAS and DEM Data from UAV Surveys for Planning Evacuation Routes on Samas Coast, Bantul Regency Sihombing, Sulpisius; Sudarmaji; Sunardi, Bambang; Darmawan, Herlan
Journal of Geoscience, Engineering, Environment, and Technology Vol. 9 No. 2 (2024): JGEET Vol 09 No 02 : June (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2024.9.2.14777

Abstract

The interaction between the Indo-Australian plate and the Eurasian plate exerts significant influence on seismic activities within the southern seas of Java Island, with potential repercussions extending to the triggering of tsunamis. Given the densely populated nature of this area, especially along the southern region of Yogyakarta Province, the coast of Samas Beach and its surroundings, mitigation efforts are needed to reduce the potential loss of life caused by tsunamis. One of the mitigation efforts is making a tsunami model which can be done using the help of DEMNAS and DEM topographical data from unmanned aerial vehicle (UAV) photogrammetry. The COMCOT software is a tool used in modeling tsunamis based on a numerical model of the shallow water equation that processes tsunami generator parameters and DEM data into an accurate tsunami model. The modeling results show that the tsunami waves will reach the Samas coast in the 38th minute after the occurrence of the earthquake. The maximum height of the tsunami inundation obtained using DEMNAS data was 21.72 m while using the UAV-DEM it was obtained 23.34 m. Comparison of modeling using DEMNAS and UAV-DEM data shows that image data collection using UAV has good resolution and has high accuracy so that it is able to produce a tsunami model that better shows the propagation of a tsunami in the actual field. The location used as a temporary/final evacuation site is Tegalsari Elementary School because of its strategic location and in tsunami modeling, this location is in the very low risk zone.

Page 1 of 2 | Total Record : 19


Filter by Year

2024 2024


Filter By Issues
All Issue Vol. 10 No. 1 (2025): Article In Press JGEET Vol 10 No 01 : March (2025) Vol. 9 No. 04 (2024): JGEET Vol 09 No 04 : December (2024) Vol. 9 No. 3 (2024): JGEET Vol 09 No 03 : September (2024) Vol. 9 No. 2 (2024): JGEET Vol 09 No 02 : June (2024) Vol. 9 No. 1 (2024): JGEET Vol 09 No 01 : March (2024) Vol. 8 No. 4 (2023): JGEET Vol 08 No 04 : December (2023) Vol. 8 No. 3 (2023): JGEET Vol 08 No 03 : September (2023) Vol. 8 No. 2 (2023): JGEET Vol 08 No 02 : June (2023) Vol. 8 No. 1 (2023): JGEET Vol 08 No 01 : March (2023) Vol. 8 No. 02-2 (2023): Special Issue from The 1st International Conference on Upstream Energy Techn Vol. 7 No. 4 (2022): JGEET Vol 07 No 04 : December (2022) Vol. 7 No. 3 (2022): JGEET Vol 07 No 03 : September (2022) Vol. 7 No. 2 (2022): JGEET Vol 07 No 02 : June (2022) Vol. 7 No. 1 (2022): JGEET Vol 07 No 01 : March (2022) Vol. 6 No. 4 (2021): JGEET Vol 06 No 04 : December (2021) Vol. 6 No. 3 (2021): JGEET Vol 06 No 03 : September (2021) Vol. 6 No. 2 (2021): JGEET Vol 06 No 02 : June (2021) Vol. 6 No. 1 (2021): JGEET Vol 06 No 01 : March (2021) Vol. 5 No. 4 (2020): JGEET Vol 05 No 04: December 2020 Vol. 5 No. 3 (2020): JGEET Vol 05 No 03 : September (2020) Vol. 5 No. 2 (2020): JGEET Vol 05 No 02 : June (2020) Vol. 5 No. 1 (2020): JGEET Vol 05 No 01: March 2020 Vol. 4 No. 4 (2019): JGEET Vol 04 No 04: December 2019 Vol. 4 No. 3 (2019): JGEET Vol 04 No 03 : September (2019) Vol. 4 No. 2 (2019): JGEET Vol 04 No 02 : June (2019) Vol 4 No 1 (2019): JGEET Vol 04 No 01 : March (2019) Vol. 4 No. 1 (2019): JGEET Vol 04 No 01 : March (2019) Vol. 4 No. 2-2 (2019): Special Edition (Geology, Geomorphology and Tectonics of India) Vol. 3 No. 4 (2018): JGEET Vol 03 No 04 : December (2018) Vol 3 No 4 (2018): JGEET Vol 03 No 04 : December (2018) Vol. 3 No. 3 (2018): JGEET Vol 03 No 03 : September (2018) Vol 3 No 3 (2018): JGEET Vol 03 No 03 : September (2018) Vol. 3 No. 2 (2018): JGEET Vol 03 No 02 : June (2018) Vol 3 No 2 (2018): JGEET Vol 03 No 02 : June (2018) Vol 3 No 1 (2018): JGEET Vol 03 No 01 : March (2018) Vol. 3 No. 1 (2018): JGEET Vol 03 No 01 : March (2018) Vol 2 No 4 (2017): JGEET Vol 02 No 04 : December (2017) Vol. 2 No. 4 (2017): JGEET Vol 02 No 04 : December (2017) Vol 2 No 3 (2017): JGEET Vol 02 No 03 : September (2017) Vol. 2 No. 3 (2017): JGEET Vol 02 No 03 : September (2017) Vol. 2 No. 2 (2017): JGEET Vol 02 No 02 : June (2017) Vol 2 No 2 (2017): JGEET Vol 02 No 02 : June (2017) Vol 2 No 1 (2017): JGEET Vol 02 No 01 : March (2017) Vol. 2 No. 1 (2017): JGEET Vol 02 No 01 : March (2017) Vol 1 No 1 (2016): JGEET Vol 01 No 01 : December (2016) Vol. 1 No. 1 (2016): JGEET Vol 01 No 01 : December (2016) More Issue