cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta pusat,
Dki jakarta
INDONESIA
Jurnal Sains & Teknologi Modifikasi Cuaca
ISSN : -     EISSN : -     DOI : -
Core Subject : Education,
Arjuna Subject : -
Articles 566 Documents
EVALUASI HASIL PENELITIAN PENGUJIAN EFEK BAHAN SEMAI CAO UNTUK MENGURANGI CURAH HUJAN DI DAS SAGULING JAWA BARAT TAHUN ANGGARAN 1999/2000 - 2000 Widodo, F Heru
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 2, No 1 (2001): June 2001
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (311.593 KB) | DOI: 10.29122/jstmc.v2i1.2144

Abstract

UPT Hujan Buatan telah melakukan penelitian pembuyaran awan dengan bahan semaiCaO sejak tahun 1999. Sampel data yang dikumpulkan hanya untuk kondisi cuaca yangmendukung terbentuknya awan potensial. Hari-hari untuk dilakukan semai dan tidaksemai ditentukan dengan metode random. Walaupun kesimpulan sementara daripenelitian ini belum final, pengujian statistik dengan Metode Wilcoxson-Mann-Whitneysementara ini menunjukkan bahwa injeksi kapor tohor kedalam awan tidak memberikanefek terhadap eksistensi awan, dan curah hujan wilayah saat dilakukan semai tidak bedanyata dengan curah hujan wilayah ketika tidak dilakukan semai.Weather Modification Technical Service Unit (UPT Hujan Buatan) was conductedexperiments of cloud dispersal using quick lime (CaO) since 1999. Samples data werecollected only during favorable days. Seeded days or unseeded days were decidedrandomly. Although the conclusion not final yet, statistical test of Wilcoxson-Mann-Whitney method indicated that injection of Calcium Oxide (CaO) on cloud didn?t have anysignificant effect on cloud dispersal and rainfall data during seeding days were notdifferent significantly from that during unseeding days
DETEKSI KEBAKARAN HUTAN DAN LAHAN MENGGUNAKAN CITRA SATELIT HIMAWARI-8 DI KALIMANTAN TENGAH Sepriando, Alpon; Hartono, Hartono; Jatmiko, Retnadi Heru
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 20, No 2 (2019): December 2019
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1431.029 KB) | DOI: 10.29122/jstmc.v20i2.3884

Abstract

IntisariKebakaran hutan dan lahan terjadi hampir setiap tahun di Indonesia, terutama di wilayah Sumatera dan Kalimantan saat musim kemarau. Deteksi kebakaran hutan dan lahan dengan citra satelit menggunakan indikator yang disebut titik panas. Titik panas yang digunakan saat ini di Indonesia diperoleh dari pengolahan data citra satelit berorbit polar (MODIS dan VIIRS) dengan resolusi temporal yang rendah, yaitu hanya 6 kali dalam sehari. Tujuan dari penelitian ini adalah memanfaatkan data citra satelit Himawari-8 untuk deteksi kebakaran hutan dan lahan yang menghasilkan titik panas dengan resolusi temporal 10 menit, dimana hasilnya di validasi dengan citra polar dan data kebakaran lapangan. Lokasi penelitian berada di Provinsi Kalimantan Tengah dan waktu penelitian adalah bulan September 2019. Data yang digunakan untuk pengolahan adalah 5 saluran Advanced Himawari Imager, peta batas administrasi dan tutupan lahan. Pemrosesan data citra satelit mencakup pemilihan piksel penutup lahan dan batas administrasi, penentuan waktu pengamatan, eliminasi piksel awan, Algoritma Pemantau Kebakaran Aktif, dan validasi hasil. Data citra Himawari-8 dapat diolah menjadi titik panas dengan temporal 10 menit. Validasi terhadap citra polar memiliki tingkat akurasi 66,2%-75,4%, comission error 28,2-46,9% dan omission error 24,6-33,8%. Tingginya comision error terhadap citra VIIRS dikarenakan citra VIIRS memiliki resolusi spasial yang jauh lebih tinggi dibandingkan dengan citra Himawari-8.  AbstractForest and land fires occur almost every year in Indonesia, especially in Sumatra and Kalimantan during the dry season. Detection of forest and land fires with satellite imagery uses an indicator called a hotspot. The hotspots used today in Indonesia are obtained from the processing of polar orbital satellite image data (MODIS and VIIRS) with a low temporal resolution, which is only six times a day. The purpose of this study is to utilize Himawari-8 satellite imagery data for the detection of forest and land fires that produce hotspots with a temporal resolution of 10 minutes, where the results are validated with polar imagery and field fire data. The research location is in Central Kalimantan Province, and the time of the study is September 2019. Data used for processing are 5 Advanced Himawari Imager channels, administrative boundary maps, and land cover. Processing of satellite imagery data includes the selection of cover pixels and administrative boundaries, determination of observation time, elimination of cloud pixels, Active Fire Monitoring Algorithm, and validation of results. Himawari-8 image data can be processed into hotspots with a temporal 10 minutes. Validation of polar images has an accuracy rate of 66.2% -75.4%, commission error 28.2-46.9% and omission error 24.6-33.8%. The high commission error on the VIIRS image is because the VIIRS image has a much higher spatial resolution compared to the Himawari-8 image. 
IDENTIFIKASI GELOMBANG KELVIN DI LAPISAN TROPOPAUSE INDONESIA BAGIAN BARAT DENGAN MENGGUNAKAN DATA SOUNDING NOAA Nababan, Cornelius Antoni
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 11, No 1 (2010): June 2010
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1176.511 KB) | DOI: 10.29122/jstmc.v11i1.2177

Abstract

Gelombang Kelvin, Tropopause, Angin zonal. Gelombang Kelvin yang sebelumnya teramati pada lapisan stratosfer bawah berada di wilayah India dan Pasifik barat. Posisi Indonesia yang berada diantara dua wilayah tersebut memungkinkan terjadinya gelombang Kelvin di wilayah Indonesia. Namun, karakter yang teramati belum tentu sama. Pada bulan JJAS, gelombang Kelvin yang teramati memiliki periode 10-20 harian sedangkan pada bulan DJFM memiliki periode 20 harian. Gelombang Kelvin tersebut merambat ke timur. Adanya aktivitas konvektif yang besar di wilayah Indonesia mampu mengganggu perambatan gelombang Kelvin. Awan-awan konvektif tersebut ditunjukkan dengan menggunakan data OLR. Pada periode JJAS, gangguan tersebut kuat pada bagian bumi utara sedangkan pada periode DJFM pada ekuator. Adanya gangguan tersebut dapat meningkatkan angin timuran sehingga meningkatkan amplitudo gelombang di bagian bumi utara pada JJAS dan bagian bumi selatan pada DJFM. Dari analisis pada lapisan 500-150 mb, terlihat adanya osilasi 20 harian (JJAS) dan 10-20 harian (DJFM) dengan perambatan ke atas. Kondisi ini menunjukkan bahwa gelombang Kelvin yang teramati pada lapisan tropopause dibangkitkan dari bawah. Gelombang Kelvin yang teramati dekat dengan sumber pembangkitnya. Kelvin waves that previously observed in the lower stratosphere in the Indian and western Pacific region. Indonesia?s position is between the two areas allowing the Kelvin wave in parts of Indonesia. However, the observed character is not necessarily the same. In JJAS period, the observed Kelvin waves have a period of 10-20 days meanwhile in DJFM period Kelvin waves detected on a period of 20 day. The Kelvin wave propagates eastward. The existence of a large convective activity in the territory of Indonesia is able to disrupt the Kelvin wave propagation. Convective clouds is shown by using the OLR data. In JJAS period, the strong disturbance in the earth?s north while in the DJFM period in equator. The existence of such disorders can increase the wind easterlies thus increasing the amplitude of the wave in the northern parts of the earth on the JJAS and southern parts of the earth on DJFM. From the analysis of the 500-150 mb layer, visible presence of 20 days oscillations (JJAS) and 10-20 days (DJFM) with upward propagation. This condition indicates that the Kelvin wave observed at the tropopause layer raised from the bottom. Kelvin waves are observed close to the sourcegenerator.
TEKNOLOGI MODIFIKASI CUACA UNTUK MENGURANGI CURAH HUJAN PADA SEA GAMES 2011 DI PALEMBANG Seto, Tri Handoko
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 13, No 2 (2012): December 2012
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (5202.071 KB) | DOI: 10.29122/jstmc.v13i2.2570

Abstract

Teknologi Modifikasi Cuaca (TMC) telah diaplikasikan untuk mengamankan SEA GAMES 2011 di Palembang, SUmatera Selatan dari ancaman hujan berlebih
PERBANDINGAN PENGUKURAN RADIOMETER DAN RADIOSONDE PADA MUSIM HUJAN DI DRAMAGA BOGOR Athoillah, Ibnu; Dewi, Saraswati; Renggono, Findy
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 17, No 2 (2016): December 2016
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (694.045 KB) | DOI: 10.29122/jstmc.v17i2.640

Abstract

IntisariBalai Besar Teknologi Modifikasi Cuaca (BB-TMC) BPPT bekerjasama dengan Badan Meteorologi Klimatologi dan Geofisika (BMKG) melakukan kegiatan Intensive Observation Period (IOP) selama puncak musim hujan pada tanggal 18 Januari - 16 Februari 2016 di wilayah Jabodetabek. Salah satu peralatan yang digunakan untuk observasi adalah Radiometer dan Radiosonde. Pada penelitian ini akan difokuskan bagaimana perbandingan hasil dari pengukuran Radiometer dan Radiosonde selama kegiatan IOP terutama untuk parameter temperatur dan kelembapan relatif. Hasil dari perbandingan pada profil atmosfer di lapisan tertentu terlihat adanya data yang mempunyai kecenderungan jauh dan tidak memiliki kedekatan nilai. Untuk pengukuran temperatur dengan radiometer jika dibandingkan dengan radiosonde, korelasi data semakin kecil di lapisan atas, sebaliknya jika untuk pengukuran kelembapan relatif, korelasi data di lapisan atas lebih tinggi daripada korelasi data di lapisan bawah. Sedangkan jika dibandingkan pada satu waktu antara radiometer dan radiosonde menunjukkan kecocokan untuk kedua data, meskipun kecocokan data kelembapan relatif lebih kecil dibandingkan data temperatur.  AbstractNational Laboratory for Weather Modification (BB-TMC) BPPT has colaborated with Meteorological Climatology and Geophysic Agency (BMKG) in conducting Intensive Observation Period (IOP) during the peak of rainy season in Jabodetabek area on January 18th- February 16th 2016. One of the tools used in the observation is Radiometer and Radiosonde. This study will focus on comparison result between Radiometer and Radiosonde measurement during IOP especially for temperature and relative humidity parameters. The result in a particular layer of profile atmosphere indicates that the data  tends to deviate away. The temperature difference measured using radiometer and radiosonde in the upper layer shows smaller value than that in the lower layer.  In contrast,  the correlation for relative humidity data in the upper layers is higher than in the lower layers. Meanwhile when compared at one time indicate a good match for both data, although the data matches of  the relative humidity are lower than the temperature data.  
HASIL PENGUKURAN PARTIKEL ASAP GROUND PERTICLES GENERATOR (GPG) DI LAB TMC PUSPIPTEK SERPONG PADA 11 APRIL 2013 Goenawan, R. Djoko; Haryanto, Untung; Sudibyo, Pitoyo Sarwono; Asmoro, Bambang; Pamuji, Pamuji
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 14, No 1 (2013): June 2013
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (381.627 KB) | DOI: 10.29122/jstmc.v14i1.2683

Abstract

ABSTRAK  Telah dilakukan pengukuran distribusi dan konsentrasi asap partikel dari hasil penyalaan GPG yang dilakukan di Lap TMC - Puspiptek Serpong. Alat yang digunakan dalam pengukuran baik besar, distribusi dan konsentrasi partikel adalah menggunakan LightHouse (LH) yang bisa menampilkan secara langsung dalam layar monitor alat tersebut. Yang secara langsung terbaca dalam monitoring LH adalah besar partikel dan jumlah partikel per satuan volume (m3). Kisaran alat pengukur partikel LH bisa mengukur terkecil 0.3 mikron hingga 5 mikron dengan rincian 0.3, 0.5, 1.0, 2.5, dan 5 mikron. Light House (LH) adalah satu satunya alat yang biasa digunakan untuk pengukuran udara dan lingkungan dari Laboratorium Aerosol, PTKMR BATAN. Telah dilakukan pengukuran partikel dari asap GPG (Ground Particles Generator) sebanyak 21 kali sampling. Sekali pegambilan sampling asap diperlukan waktu sebanyak 5 menit dan pengukuran udara dalam wadah sampling tersebut juga diperlukan waktu sekitar 5 menit. Selain pengukuran dengan menggunakan LH, juga dilakukan pengukuran dengan menggunakan Impaktor Kaskade Type Anderson dengan 12 tingkat yang memungkinkan pengukuran dari 0.1 mikron hingga 9 mikron. Waktu yang diperlukan cukup lama, yaitu antara pukul 13.15 hingga 18.15 WIB yaitu 5 jam. Impaktor tidak bisa langsung terbaca hasil pengukuran partikelnya namun harus di proses kemudian di kondiskan serta dilakukan penimbangan partikel yang mengendap di setiap tingkatan, sehingga bisa diketahui distribusi partikel tersebut setiap tingkat dari 0.1 mikron hingga partikel terbesar yaitu 9 mikron. Hasil sementara dari pengukuran menggunakan LH dari sebanyak 21 sampel adalah untuk partikel 0.3 mikron memiliki jumlah partikel terbesar mencapai 495.466.815/m3 atau 495 partikel/cm3 asap dan terkecil sebanyak  51.767.763/m3 atau 52 partikel/cm3 asap. Sementara, untuk partikel yang terukur 0.5 mikron terbanyak mencapai 8.969.923/m3 atau 9 partikel/cm3 asap dan terkecil 84.755.200 partikel/cm3 atau 85 partikel/cm3. Sedangkan, partikel yang terukur 1.0, 2.5 dan 5.0 mikron di LH tidak terpantau atau tidak ada sama sekali alias Nol (skala 1 cm3). Tampak puncak distribusinya diperkirakan kurang dari 0.3 mikron (antara 0.1 ? 0.05 mikron), sebagai ?tail? kanan distribusi (jika dianggap normal) adalah 0.5 mikron. Perkiraan tersebut akan di buktikan dengan menggunakan Impaktor yang bisa mengukur partikel terkecil 0.1 mikron.    ABSTRACT  Measurement of Concentration Distribution and smoke particles from the ignition GPG conducted in TMC-Lab Puspiptek Serpong. Measurement tool used in both large, the distribution and concentration of particles is using Light-House (LH) which can display directly in the device monitor screen which is directly readable in monitoring large particles and LH is the number of particles per unit volume (m3). LH range of gauges can measure the smallest particles 0.3 microns to 5 microns with the details 0.3, 0.5, 1.0, 2.5 and 5 microns. Light House (LH) is the only tool used to measure air and environment of the Aerosol Laboratory, PTKMR BATAN in Jakarta. Have performed measurements of the smoke particles GPG (Ground Particles Generator) as much as 21 times the sampling. Once pegambilan sampling smoke take as many as 5 minutes and air measurements in the sampling container also takes about 5 minutes as well. In addition to measurements by using LH, also be measured by using the cascade Impaktor Type Anderson with 12 levels that allow measurement of 0.1 microns to 9 microns. It takes quite a long time, which is between 13:15 to 18:15 hrs ie 5 hour. Impaktor can not directly read the results of measurements of the particles but must be in process later in kondiskan and sediment particles weighing is done at every level, so they can know the distribution of particles of 0.1 microns each level until the largest particles is 9 microns. Interim results of measurements using as many as 21 samples of LH is for 0.3 micron particles have the greatest number of particles reaching 495 partikel/cm3 495.466.815/m3 or as much smoke and the smallest 52 partikel/cm3 51.767.763/m3 or smoke. While, for the measured particles 0.5 microns or 9 the highest reaches 8.969.923/m3 partikel/cm3 smoke and smallest partikel/m3 84,755,200 or 85 partikel/cm3. Whereas, particles measured 1.0, 2.5 and 5.0 microns in LH is not monitored or none at all, aka Zero. Looks peak distribution estimated to be less than 0.1 microns, as the "tail" distribution right (if it is considered normal) is 0.5 microns. The estimate will be proved by using Impaktor that can measure the smallest particles of 0.1 microns.
KAJIAN PELUANG CURAH HUJAN BULANAN DAN PERKIRAAN HASIL TAMBAHAN AIR SEBAGAI BAHAN PERTIMBANGAN PENENTUAN WAKTU PELAKSANAAN MODIFIKASI CUACA (HUJAN BUATAN) KASUS: DAS RIAM KANAN –KALIMANTAN SELATAN Tikno, Sunu
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 1, No 2 (2000): December 2000
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (131.151 KB) | DOI: 10.29122/jstmc.v1i2.2128

Abstract

Daerah Aliran Sungai (DAS) Riam Kanan yang terletak di Kabupaten Banjar PropinsiKalimantan Selatan pernah digunakan sebagai daerah target pelaksanaan hujan buatan (penyemaian awan) beberapa kali. Di dalam DAS tersebut terdapat satu dam yang berfungsi untuk pembangkit tenaga listrik. Suatu hal yang sering berkaitan denganketersediaan air adalah masalah distribusi hujan. Bila terjadi musim kemarau panjang atau adanya gannguan iklim, maka akan menyebabkan devisit air. Pada saat seperti ituteknologi hujan buatan dapat diterapkan sebagai salah satu teknologi alternatif untukmenjaga ketersediaan air.Untuk menentukan waktu yang tepat bagi pelaksanaan hujan buatan, telah dilakukananalisis data curah hujan histories. Dengan menggunakan pendekatan analisis peluangdistribusi normal, dapat diperkirakan jumlah curah hujan yang akan dan hasil tmbahan air. Hasil analisis menunjukan bahwa bila pelaksanaan hujan buatan bulan Nopember s.d. April akan meningkatkan tambahan air sebesar 25-50 juta m3 dengan tingkat peluang keberhasilan berkisar 98.7% - 29.8% dan untuk peningkatan sebesar 50-75 juta m3 nilai peluangnya adalah 80.2% - 11.1%Riam Kanan catchment area of Banjar District South Kalimantan Province was used as the target of cloud seeding activities several times. There are have one dam at down stream area which purposed for hydroelectric power plant. Even though Indonesia known that have enough rainfall but the case it is not evenly distributed. One time it has more than enough rainfall; another is very dry that is not enough to operate the hydroelectric power plant optimally. At this time cloud seeding activity to enhanced rainfall amount is necessary to be implemented.To determine favorable time to execute cloud seeding activity it is necessary to assessrainfall pattern by making use of the historical data and analyses them statically. Normaldistribution method was used in this analysis. The result if cloud seeding activity isimplemented in November to April will increase rainfall amount between 25 ? 50 million m3 with probability value 98.7 % - 29.8 % and for increase rainfall amount between 50 ? 75 million m3 with probability 80.2% ? 11.1%.
APPENDIX JSTMC VOL.19 NO.2 DECEMBER 2018 : AUTHOR INDEX & KEYWORD INDEX Wirahma, Samba
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 19, No 2 (2018): December 2018
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (36.368 KB) | DOI: 10.29122/jstmc.v19i2.3269

Abstract

ANALISIS ANGIN ZONAL DI INDONESIA SELAMA PERIODE ENSO Mulyana, Erwin
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 3, No 2 (2002): December 2002
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (435.484 KB) | DOI: 10.29122/jstmc.v3i2.2167

Abstract

Telah dianalisis angin zonal di Indonesia selama periode ENSO berdasarkan databulanan angin zonal dari National Center Environmental Prediction / National Center for Atmospheric Research (NCEP/NCAR) reanalisys grid data (2.5 x 2.5 ) pada ketinggian850 mb selama periode tahun 1961 sampai dengan 1993. Berdasarkan rata -rata tigabulanan diperoleh bahwa pada tahun El Nino terjadi penguatan angin timuran pada MAMdan SON. Sementara pada JJA angin timuran yang berhembus di wilayah Indonesiaterutama di sebelah selatan equator tidak mengalami perubahan berarti. Sedangkanpada DJF angin baratan yang berhembus di wilayah Indonesia sebelah selatan equatorkecepatannya melemah.The zonal wind (850 mb) over Indonesia have been analyzed for period 1961-1993.Intensified easterly wind during El Nino years over Indonesia mainly in the south ofequator region found in MAM and SON. During JJA the easterly wind remain constant inboth El Nino years and La Nina years. During DJF, westerly wind in El Nino years decreases over Indonesia mainly in the south of equator.
APPENDIX JSTMC VOL.18 NO.2 DECEMBER 2017 : AUTHOR INDEX & KEYWORD INDEX Wirahma, Samba
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 18, No 2 (2017): December 2017
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (11.484 KB) | DOI: 10.29122/jstmc.v18i2.2808

Abstract


Filter by Year

2000 2022


Filter By Issues
All Issue Vol. 23 No. 2 (2022): December 2022 Vol. 23 No. 1 (2022): June 2022 Vol. 22 No. 2 (2021): December 2021 Vol. 22 No. 1 (2021): June 2021 Vol. 21 No. 2 (2020): December 2020 Vol. 21 No. 1 (2020): June 2020 Vol 20, No 2 (2019): December 2019 Vol. 20 No. 2 (2019): December 2019 Vol. 20 No. 1 (2019): June 2019 Vol 20, No 1 (2019): June 2019 Vol 19, No 2 (2018): December 2018 Vol. 19 No. 2 (2018): December 2018 Vol 19, No 1 (2018): June 2018 Vol. 19 No. 1 (2018): June 2018 Vol 19, No 1 (2018): June 2018 Vol 19, No 2 (2018) Vol. 18 No. 2 (2017): December 2017 Vol 18, No 2 (2017): December 2017 Vol 18, No 2 (2017): December 2017 Vol. 18 No. 1 (2017): June 2017 Vol 18, No 1 (2017): June 2017 Vol 18, No 1 (2017): June 2017 Vol. 17 No. 2 (2016): December 2016 Vol 17, No 2 (2016): December 2016 Vol 17, No 2 (2016): December 2016 Vol 17, No 1 (2016): June 2016 Vol 17, No 1 (2016): June 2016 Vol. 17 No. 1 (2016): June 2016 Vol 16, No 2 (2015): December 2015 Vol. 16 No. 2 (2015): December 2015 Vol 16, No 2 (2015): December 2015 Vol 16, No 1 (2015): June 2015 Vol. 16 No. 1 (2015): June 2015 Vol 16, No 1 (2015): June 2015 Vol 15, No 2 (2014): December 2014 Vol 15, No 2 (2014): December 2014 Vol. 15 No. 2 (2014): December 2014 Vol 15, No 1 (2014): June 2014 Vol. 15 No. 1 (2014): June 2014 Vol 15, No 1 (2014): June 2014 Vol 14, No 2 (2013): December 2013 Vol. 14 No. 2 (2013): December 2013 Vol 14, No 2 (2013): December 2013 Vol 14, No 1 (2013): June 2013 Vol. 14 No. 1 (2013): June 2013 Vol 14, No 1 (2013): June 2013 Vol. 13 No. 2 (2012): December 2012 Vol 13, No 2 (2012): December 2012 Vol 13, No 2 (2012): December 2012 Vol 13, No 1 (2012): June 2012 Vol 13, No 1 (2012): June 2012 Vol. 13 No. 1 (2012): June 2012 Vol. 12 No. 2 (2011): December 2011 Vol 12, No 2 (2011): December 2011 Vol 12, No 2 (2011): December 2011 Vol 12, No 1 (2011): June 2011 Vol 12, No 1 (2011): June 2011 Vol. 12 No. 1 (2011): June 2011 Vol. 11 No. 2 (2010): December 2010 Vol 11, No 2 (2010): December 2010 Vol 11, No 2 (2010): December 2010 Vol 11, No 1 (2010): June 2010 Vol 11, No 1 (2010): June 2010 Vol. 11 No. 1 (2010): June 2010 Vol 3, No 2 (2002): December 2002 Vol 3, No 2 (2002): December 2002 Vol. 3 No. 2 (2002): December 2002 Vol. 3 No. 1 (2002): June 2002 Vol 3, No 1 (2002): June 2002 Vol 3, No 1 (2002): June 2002 Vol 2, No 1 (2001): June 2001 Vol 2, No 1 (2001): June 2001 Vol. 2 No. 1 (2001): June 2001 Vol 1, No 2 (2000): December 2000 Vol 1, No 2 (2000): December 2000 Vol. 1 No. 2 (2000): December 2000 Vol. 1 No. 1 (2000): June 2000 Vol 1, No 1 (2000): June 2000 Vol 1, No 1 (2000): June 2000 More Issue