cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Chemistry
ISSN : 14119420     EISSN : 24601578     DOI : -
Indonesian Journal of Chemistry is an International, peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry including applied chemistry. The journal is accredited by The Ministry of Research, Technology and Higher Education (RISTEKDIKTI) No : 21/E/KPT/2018 (in First Rank) and indexed in Scopus since 2012. Since 2018 (Volume 18), Indonesian Journal of Chemistry publish four issues (numbers) annually (February, May, August and November).
Arjuna Subject : -
Articles 1,956 Documents
Low-Cost Yet High-Performance Hydrochar Derived from Hydrothermal Carbonization of Duku Peel (Lansium domesticum) for Cr(VI) Removal from Aqueous Solution Risfidian Mohadi; Novie Juleanti; Normah Normah; Patimah Mega Syah Bahar Nur Siregar; Alfan Wijaya; Neza Rahayu Palapa; Aldes Lesbani
Indonesian Journal of Chemistry Vol 22, No 6 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.73353

Abstract

Carbon-based adsorbent as a hydrochar (Hc) material with Duku (Lansium domesticum) peel precursors has been successfully synthesized as evidenced by XRD, FT-IR, BET, and SEM analysis. XRD analysis showed the presence of diffraction peaks around 16° and 22° which indicated the presence of carbonaceous material. This is confirmed by FTIR analysis which shows the presence of vibration at 2931 cm−1 of cellulose. SEM data results showed that heterogeneous and has an irregular shape and surface area increased twice from Duku peel to Hc. Duku peel and Hc adsorbent materials were applied to adsorb heavy metal ions Cr(VI). Kinetic parameters of Cr(VI) using Duku peel and Hc showed that the optimum time reached was at 120 min. The adsorption kinetics model of Cr(VI) using Hc tends to follow the PFO model and Langmuir isotherm adsorption. Duku peel material used to adsorb Cr(VI) reached an adsorption capacity of 42.19 mg/g, while in Hc material there was an increase that reached 80.64 mg/g. The thermodynamic parameters of both materials show that the adsorption process is spontaneous.
Polyvinyl Alcohol-Cellulose Nanocrystal Hydrogel Containing Anti-inflammatory Agent Lia Amelia Tresna Wulan Asri; Athiya Anindya; Yuni Eva Kartika; Dita Puspitasari; Untung Triadhi; Husaini Ardy
Indonesian Journal of Chemistry Vol 22, No 5 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.73357

Abstract

Hydrogel wound dressings were developed through cross-linking reactions of polyvinyl alcohol (PVA) with glutaraldehyde and by the addition of diclofenac sodium and rutin as anti-inflammatory agents. Cellulose nanocrystals (CNC) were added to improve mechanically and release properties. CNC was isolated from pineapple leaf fibers through the ammonium persulfate method resulting in a mixture of rod-like whisker and spherical morphology. The mechanical properties of hydrogels are increasing with the addition of CNC. Hydrogels containing 8% CNC exhibited 7.266 N/mm2 tensile strength, 156.3% maximum strain, and 700.3 N/mm2 elastic modulus. Drug release tests containing sodium diclofenac were done by taking incubated phosphate buffer saline samples in a pH 7.4 environment and showed that all CNC variations tested are controllable for the first 30 min compared to the sample without CNC. Sodium diclofenac is easily eluted from hydrogel due to its polar properties, and all samples almost demonstrated the same release profile. PVA hydrogels showed fluctuating concentrations of diclofenac compared to others. While hydrogels containing rutin showed a controlled release mode, the addition of CNC in PVA resulted in a slower release of rutin, possibly due to the better binding between CNC and rutin. To conclude, CNC has successfully improved the performance of PVA hydrogels, including the drug release properties.
Profiling of Phytochemical Compounds of East Java Red Rice Bran Has the High-Value Biological Activities as Antioxidant and Antidiabetic Yoravika Dwiwibangga; Anna Safitri; Fatchiyah Fatchiyah
Indonesian Journal of Chemistry Vol 22, No 5 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.73432

Abstract

The phytochemicals contained in rice bran, mainly flavonoid compounds, are predicted to have biological activity. Flavonoids are able to counteract the free radicals and degrade insulin resistance. The East Java Red Rice Bran samples, e.g., Mentik Wangi, Aek Sibundong, and Blambangan, were used in the study. Their phytochemical profiles, functional groups, antioxidant, and antidiabetic activities were investigated. The phytochemical analysis showed that the bran of Mentik Wangi, Aek Sibundong, and Blambangan contained flavonoid, triterpenoid, phenolic, tannin, and glycoside. Based on the FTIR, some functional groups were identified in three rice bran varieties, namely, the O-H stretching, C-H aliphatic, C-H sp3 stretching, C=C stretching aromatics, C=C stretching alkenes, CH2 and CH3 bonds rocking, C-H aromatic, CH-OH stretching alcohols, and C-O stretching ether or ester suggesting that rice brans are rich in phytochemical compounds. Through LC-HRMS analysis in positive ion mode, several types of flavonoids were confirmed. Pinocembrin was found in the three brands. The highest antioxidant and antidiabetic activity were observed in Blambangan rice bran with an IC50 value of 1.09 and 75.76 µg/mL, respectively. To conclude, the red rice bran phytochemical compounds exhibit potential biological activities as antioxidant and antidiabetic agents.
Electrochemical Sensor of Levofloxacin on Boron-Doped Diamond Electrode Decorated by Nickel Nanoparticles Prastika Krisma Jiwanti; Irfansyah Rais Sitorus; Grandprix Thomryes Marth Kadja; Siti Wafiroh; Yasuaki Einaga
Indonesian Journal of Chemistry Vol 22, No 5 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.73515

Abstract

Levofloxacin (LEV) was known as one of the fluoroquinolone antibiotics that widely used as an antibacterial agent. Monitoring of LEV is important due to its negative side effect on humans. The determination of LEV was studied for the first time on nickel modified on a boron-doped diamond (NiBDD) electrode using the square wave voltammetry (SWV) method to improve the catalytic and sensitivity of the sensor. The response was linear in the range of 30–100 mM LEV. LEV sensor on NiBDD was found to be selective in the presence of urea, glucose, and ascorbic acid interferences. Good reproducibility with % a relative standard deviation of 1.45% (n = 10) was achieved. Therefore, the NiBDD electrode could be potentially applied for the real detection method of LEV.
Synthesis and Characterization of 2,4-Dichlorophenoxypropanoic Acid (2,4-DP) Herbicide Interleaved into Calcium-Aluminium Layered Double Hydroxide and the Study of Controlled Release Formulation Farah Liyana Bohari; Nur Aishah Mohd Noor; Sheikh Ahmad Izaddin Sheikh Mohd Ghazali; Nur Nadia Dzulkifli; Is Fatimah; Nurain Adam
Indonesian Journal of Chemistry Vol 22, No 5 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.73546

Abstract

The commonly used herbicide in agriculture, namely 2,4-dichlorophenoxypropanoic acid (2,4-DP), is an anionic herbicide used to interleave into the interlayer of calcium-aluminum layered double hydroxide (Ca-Al LDH) employing co-precipitation method to form a new nanohybrid labeled as CAL-2,4DP. The LDH compound serves as a host in supporting the herbicide’s controlled release formulation. The effective interleave was investigated by employing a powder X-Ray Diffraction (XRD) pattern at 0.025 M nanocomposite, which revealed that the basal spacing has increased from 8.0 Å to 23.8 Å. The ATR-FTIR spectra further supported the interleaving, where the nitrate peak (NO−) diminished, and the carboxylate ion (COO−) band appeared at 1653 cm−1. The percentage loading of CAL-2,4DP was 71.26%, calculated from the carbon content in the sample. The BET analysis shows that CAL-2,4DP was a mesoporous material relying on nitrogen-desorption isotherms. The release of 2,4-DP ions into the aqueous solutions followed the order of PO43− > CO32− > Cl− with a percentage of 83, 65, and 30%, respectively. This work indicates the successful interleaving process of the 2,4-DP anion and the potential of CAL-2,4DP as an eco-friendly agrochemical that can be beneficial for farmers in minimizing herbicide usage to the environment.
Enhanced Drug Release of Poly(lactic-co-glycolic Acid) Nanoparticles Modified with Hydrophilic Polymers: Chitosan and Carboxymethyl Chitosan Diah Lestari; Noverra Mardhatillah Nizardo; Kamarza Mulia
Indonesian Journal of Chemistry Vol 22, No 5 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.73673

Abstract

The biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) is a biomaterial with great potential as a drug delivery carrier and a tissue engineering scaffold. Using diclofenac sodium (DS) as a drug model, PLGA/DS nanoparticles were synthesized by modification with two hydrophilic polymers: chitosan and carboxymethyl chitosan (CMCh). The introduction of chitosan and CMCh enhances the efficiency encapsulation, capacity loading of the nanoparticles, and DS release at pH 6.8 and minimum release at pH 1.2. Synthesis of nanoparticles was carried out using a double emulsion (water/oil/water) solvent evaporation method. Characterization using an Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrophotometer indicates that the interaction between DS and polymer on nanoparticles is non-covalent with a spherical shape based on a transmission electron microscope (TEM) and scanning electron microscope (SEM) characterization. From the various formulation studied, nanoparticles with the ratio chitosan-PLGA-DS and CMCh-PLGA-DS of 2:20:4 proved to be the optimum model carrier with the required release profile and could be the alternative for DS delivery systems.
Review on Anticancer Activity of Essential Metal Dithiocarbamate Complexes Rizal Irfandi; Indah Raya; Ahyar Ahmad; Ahmad Fudholi; Hasnah Natsir; Desy Kartina; Harningsih Karim; Santi Santi; Subakir Salnus
Indonesian Journal of Chemistry Vol 22, No 6 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.73738

Abstract

The importance of essential metal ions and their metal complexes in the creation of prospective medical therapies has long been recognized. In chemistry, molecular biology, and medicinal fields; the interaction of metal complexes with DNA has been a subject of study. The dithiocarbamate essential metal complex is described extensively in the literature for its various benefits and advantages. With proper use of ligands, it is proven to increase the cytotoxic activity of metal complexes against cancer cells. Some researches have shown significant progress regarding the biological activities of the dithiocarbamate essential metal complex as antimicrobial, antioxidant, and anticancer agents. Metal complexes form complexes with dithiocarbamate ligands with unique structural variations. In this study, we presented an overview of the cytotoxic effects of some dithiocarbamate essential metal complexes on cancer cells, as well as fresh approaches to the design of essential metal-based therapeutics containing dithiocarbamate and molecular targets in cancer therapy. This review may provide an update on recent developments in the medicinal use of essential metals with dithiocarbamate ligands, carried out to identify recent relevant literature. Finally, we predict that the essential metal complexed with dithiocarbamate can be a new breakthrough in the future development of cancer drugs.
Recent Advances and Future Prospects of Molecular Imprinting Polymers as a Recognition Sensing System for Food Analysis: A Review Almajed Asaad Abdullah Sfoog; Norlaili Abu Bakar; Nurulsaidah Abdul Rahim; Wan Rusmawati Wan Mahamod; Norhayati Hashim; Siti Kamilah Che Soh
Indonesian Journal of Chemistry Vol 22, No 6 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.73879

Abstract

Molecular imprinting polymers (MIPs) have been widely used to produce stable polymeric materials due to their highly selective binding sites to determine the analyte (target molecule) in food products. MIPs begin with a complex compound between the template molecule and the functional monomers that can be polymerized when there is a closely crossed link. MIPs left specific cavities after the removal of templates during washing, which complements the size and shape of the templates. The use of MIPs has contributed to novel advances in materials science, polymer science, natural science, and other multi-disciplinary systems. Optical chemical sensor is an exciting field in MIPs today due to comprehend the unique affirmation limit of associated polymers giving stable polymers with high molecular recognition capabilities. MIPs display a wide extent of relevance, incredible flexibility, security, and high selectivity; their internal affirmation districts can be explicitly gotten together with design molecules to achieve specific affirmation. This review covers the various achievements of sensors used in laboratory analyses. The advancement in the development of MIPs is evaluated with an accentuation on the preparation principle, the discovery process, the molecular recognition mechanism and future perspectives and challenges for MIPs in building an optical chemical sensor.
Synthesis, DFT Calculations, DNA Interaction, and Antimicrobial Studies of Some Mixed Ligand Complexes of Oxalic Acid and Schiff Base Trimethoprim with Various Metal Ions Eid Abdalrazaq; Abdel Aziz Qasem Jbarah; Taghreed Hashim Al-Noor; Gassan Thabit Shinain; Mohammed Mahdi Jawad
Indonesian Journal of Chemistry Vol 22, No 5 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.74020

Abstract

Mixed ligand metal complexes are synthesized from oxalic acid with Schiff base, and the Schiff base was obtained from trimethoprim and acetylacetone. The synthesized complexes were of the type [M(L1)(L2)], where the metal, M, is Ni(II), Cu(II), Cr(III), and Zn(II), L1 corresponds to the trimethoprim ((Z)-4-((4-amino-5-(3,4,5-trimethoxybenzyl)pyrimidine-2-yl)imino)pentane-2-one) as the first ligand and L2 represent the oxalate anion ( ) as a second ligand. Characterization of the prepared compounds was performed by elemental analysis, molar conductivity, magnetic measurements, 1H-NMR, 13C-NMR, FT-IR, and Ultraviolet-visible (UV-Vis) spectral studies. The recorded infrared data is reinforced with density functional theory (DFT) calculations. Also, the recorded and calculated IR spectra of the complexes suggested that the coordination of Schiff base is a bidentate ligand with Cu and Ni complexes and a tridentate ligand with Co, Cr, and Zn complexes. The electronic structures of the complexes were investigated by DFT calculations, showing several degrees of HOMO-LUMO energy gaps between complexes. The complexes were studied for their DNA interaction activities. The synthesized ligand and its metal complexes were evaluated for antimicrobial properties against bacterial strains of Bacillus subtilis (G+), Enterobacter cloacae (G-), and Staphylococcus aureus (G+). These complexes considered in this study showed good antimicrobial activity.
Exploration of Novel Mono Hydroxamic Acid Derivatives as Inhibitors for Histone Deacetylase Like Protein (HDLP) by Molecular Dynamics Studies Gunasingham Parthiban; Ramachandren Dushanan; Samantha Weerasinghe; Dhammike Dissanayake; Rajendram Senthilnithy
Indonesian Journal of Chemistry Vol 22, No 6 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.74167

Abstract

The acetylation modification process of histone has an essential role in the epigenetic regulation of gene expression. This process is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDACs are thought to be vital for cell function. Particularly, higher HDAC expression is frequent in various cancers, resulting in the dysregulation of several target genes involved in cell proliferation, differentiation, and survival. In this study, the inhibitory feasibility of several HDAC inhibitors was investigated, including vorinostat (SAHA), N-hydroxy-3-phenylprop-2-enamide (CPD1), N-hydroxy-3-(pyridine-4-yl)prop-2-enamide (CPD2), N-hydroxy-3-(pyridine-2-yl)prop-2-enamide (CPD3), 4-(diphenylamino)-N-(5-(hydroxyamino)-5-oxopentyl)benzamide (CPD4), 2-(6-(((6-fluoronaphthalen-2-yl)methyl)amino)-3-azabicyclo[3.1.0]hex-3-yl)-N-hydroxypirimidine-5-carboxamide (CPD5), and N-(3-aminopropyl)-N-hydroxy-2-((naphthalene-1-yloxy)methyl)oct-2-enediamide (CPD6). By examining the stability of the enzyme, positional stability of the individual amino acids, and binding energies of HDLP-inhibitor complexes, the inhibitory feasibility was assessed. The complexes of the HDLP enzyme with SAHA, CPD4, CPD5, and CPD6 had higher stability than the other studied complexes, according to the results of trajectory analysis and the Ramachandran plot. Based on the calculated MM-PBSA binding free energies, the stability of the HDLP enzyme followed this order CPD4 > CPD5 > SAHA > CPD6 > CPD2 > CPD3 > CPD1. The drugability values followed the same trend as the previous ones. Based on the obtained in silico results, CPD4, CPD5, and CPD6 were discovered to be possible lead compounds as reference inhibitors of SAHA.

Filter by Year

2001 2025


Filter By Issues
All Issue Vol 25, No 5 (2025) Vol 25, No 4 (2025) Vol 25, No 3 (2025) Vol 25, No 2 (2025) Vol 25, No 1 (2025) Vol 24, No 6 (2024) Vol 24, No 5 (2024) Vol 24, No 4 (2024) Vol 24, No 3 (2024) Vol 24, No 2 (2024) Vol 24, No 1 (2024) Vol 23, No 6 (2023) Vol 23, No 5 (2023) Vol 23, No 4 (2023) Vol 23, No 3 (2023) Vol 23, No 2 (2023) Vol 23, No 1 (2023) Vol 22, No 6 (2022) Vol 22, No 5 (2022) Vol 22, No 4 (2022) Vol 22, No 3 (2022) Vol 22, No 1 (2022) Vol 22, No 2 (2022) Vol 21, No 6 (2021) Vol 21, No 5 (2021) Vol 21, No 4 (2021) Vol 21, No 3 (2021) Vol 21, No 2 (2021) Vol 21, No 1 (2021) Vol 20, No 6 (2020) Vol 20, No 5 (2020) Vol 20, No 4 (2020) Vol 20, No 3 (2020) Vol 20, No 2 (2020) Vol 20, No 1 (2020) Vol 19, No 4 (2019) Vol 19, No 3 (2019) Vol 19, No 2 (2019) Vol 19, No 1 (2019) Vol 18, No 4 (2018) Vol 18, No 3 (2018) Vol 18, No 2 (2018) Vol 18, No 1 (2018) Vol 17, No 3 (2017) Vol 17, No 2 (2017) Vol 17, No 1 (2017) Vol 16, No 3 (2016) Vol 16, No 2 (2016) Vol 16, No 1 (2016) Vol 15, No 3 (2015) Vol 15, No 2 (2015) Vol 15, No 1 (2015) Vol 14, No 3 (2014) Vol 14, No 2 (2014) Vol 14, No 1 (2014) Vol 13, No 3 (2013) Vol 13, No 2 (2013) Vol 13, No 1 (2013) Vol 12, No 3 (2012) Vol 12, No 2 (2012) Vol 12, No 1 (2012) Vol 11, No 3 (2011) Vol 11, No 2 (2011) Vol 11, No 1 (2011) Vol 10, No 3 (2010) Vol 10, No 2 (2010) Vol 10, No 1 (2010) Vol 9, No 3 (2009) Vol 9, No 2 (2009) Vol 9, No 1 (2009) Vol 8, No 3 (2008) Vol 8, No 2 (2008) Vol 8, No 1 (2008) Vol 7, No 3 (2007) Vol 7, No 2 (2007) Vol 7, No 1 (2007) Vol 6, No 3 (2006) Vol 6, No 2 (2006) Vol 6, No 1 (2006) Vol 5, No 3 (2005) Vol 5, No 2 (2005) Vol 5, No 1 (2005) Vol 4, No 3 (2004) Vol 4, No 2 (2004) Vol 4, No 1 (2004) Vol 3, No 3 (2003) Vol 3, No 2 (2003) Vol 3, No 1 (2003) Vol 2, No 3 (2002) Vol 2, No 2 (2002) Vol 2, No 1 (2002) Vol 1, No 3 (2001) Vol 1, No 2 (2001) Vol 1, No 1 (2001) ARTICLE IN PRESS Article in press More Issue