cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. lamongan,
Jawa timur
INDONESIA
Unisda Journal of Mathematics and Computer Science (UJMC)
ISSN : 24603333     EISSN : 2579907X     DOI : -
Core Subject : Science, Education,
Unisda Journal of Mathematics and Computational Science (UJMC) is a research journal published by Mathematics Department of Mathematics and Natural Sciences Unisda Lamongan with the scope of pure mathematics, applied science, education, statistics
Arjuna Subject : -
Articles 129 Documents
Optimasi Biaya Pendistribusian Bibit Padi Menggunakan Metode ASM Modifikasi Muhsin Nasrul Fawa’idl; Mohammad Syaiful Pradana; Dinita Rahmalia
UJMC (Unisda Journal of Mathematics and Computer Science) Vol 8 No 1 (2022): Unisda Journal of Mathematics and Computer science
Publisher : Mathematics Department, Faculty of Mathematics and Sciences Unisda Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The delay in rice seed distribution activities during the Covid-19 pandemic caused rice seed distributors and agents to have difficulty meeting market needs. The purpose of this study was to determine the optimum cost of distributing rice seeds using the modified ASM method. This method replaces the dummy value with the largest reduced value which functions as an optimization of the zero number that appears in the table. This algorithm is taken from the Improved Zero Point method. Data were taken from three distributors and five agents of rice seeds in Sarirejo and Tikung sub-districts, Lamongan district. The results of this study indicate that the ASM method is able to provide optimum results for transportation problems with unbalanced data with relatively shorter steps. Abstrak Terhambatnya kegiatan distribusi bibit padi selama masa pandemi covid-19 menyebabkan para distributor dan agen bibit padi mengalami kesulitan dalam memenuhi kebutuhan pasar. Tujuan penelitian ini adalah untuk menentukan biaya optimum pada pendistribusian bibit padi menggunakan metode ASM modifikasi. Metode ini mengganti nilai dummy dengan nilai tereduksi terbesar yang berfungsi sebagai pengoptimalan angka nol yang muncul pada tabel. Algoritma ini diambil dari metode Improved Zero Point. Data diambil dari tiga distributor dan lima agen bibit padi yang terdapat di kecamatan Sarirejo dan Tikung kabupaten Lamongan. Hasil penelitian ini menunjukkan metode ASM mampu memberikan hasil yang optimum untuk masalah transportasi dengan data tak-seimbang dengan langkah yang relatif lebih singkat.
Model Kontrol Optimal SIR Pada Penyakit Campak Awawin Mustana Rohmah; Siti Alfiatur Rohmaniah; Rifky Ardhana Kisno Saputra
UJMC (Unisda Journal of Mathematics and Computer Science) Vol 8 No 1 (2022): Unisda Journal of Mathematics and Computer science
Publisher : Mathematics Department, Faculty of Mathematics and Sciences Unisda Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52166/ujmc.v8i1.3226

Abstract

The SIR model is one of the epidemic models to describe the spread of infectious diseases with healing and without immunity to these infections. Environmental changes can affect changes in disease patterns that can cause endemic. One of the diseases that cause endemic is Measles (Measles). Therefore, it is necessary to take preventive measures to reduce the rate of spread of the disease, the most effective measure to prevent the spread of the disease is vaccination. Measles transmission prevention events that occur in a population can be modeled in a mathematical form, one of which is the SIR model. The SIR model is divided into four subpopulations, namely the susceptible population or a subpopulation of susceptible individuals to the disease, the infected subpopulation or a subpopulation of infected individuals and can transmit the disease and the recovary subpopulation or individual subpopulation recovering from the disease. Vaccination in this case is the addition of controls to the SIR model, where before being controlled, Measles was only treated normally without vaccines, so that the disease is still common in the community. Giving the right vaccine will reduce the number of infected subpopulations, so that the recovery subpopulation will increase. In this study, the SIR model was developed with the addition of controls. The control in this model is a vaccination given to infected subpopulations, so that the recovery subpopulation has increased, because the number of infected subpopulations has decreased. Abstrak Model SIR merupakan salah satu model epidemik untuk menggambarkan penyebaran penyakit infeksi dengan adanya penyembuhan dan tanpa adanya kekebalan terhadap infeksi tersebut. Perubahan lingkungan hidup dapat mempengaruhi perubahan pola penyakit yang dapat menimbulkan endemik. Salah satu penyakit yang menyebabkan endemi yaitu penyakit Campak (Measles). Oleh karena itu perlu adanya tindakan pencegahan untuk mengurangi laju penyebaran penyakit tersebut, tindakan yang dinilai paling efektif untuk mencegah penyebaran penyakit adalah dengan cara vaksinasi. Kejadian pencegahan penularan penyakit Campak yang terjadi pada suatu populasi dapat dimodelkan ke dalam bentuk matematis, salah satunya adalah model SIR. Model SIR dibagi menjadi empat subpopulasi yaitu populasi susceptible atau subpopulasi individu rentan terhadap penyakit, subpopulasi infected atau subpopulasi individu terinfeksi serta dapat menularkan penyakit dan subpopulasi recovary atau subpopulasi individu sembuh dari penyakit. Vaksinasi dalam hal ini adalah penambahan kontrol pada model SIR, dimana sebelum dikontrol, penyakit Campak hanya diobati biasa tanpa pemberian vaksin, sehingga penyakit tersebut masih banyak dijumpai di masyarakat. Pemberian vaksin yang tepat, akan menurunkan jumlah subpopulasi terinfeksi, sehingga subpopulasi recovery akan mengalami kenaikan. Pada penelitian ini mengembangkan model SIR dengan penambahan kontrol. Kontrol pada model tersebut merupakan vaksinasi yang diberikan kepada subpopulasi infected, sehingga subpopulasi recovery mengalami kenaikan, kerena jumlah subpopulasi infected menurun.
Perbandingan Ideal Prima Pada Gelanggang Polinomial Bilangan Bulat dan Gelanggang Polinomial Bilangan Bulat Modulo Daisyah Alifian Fatahilah
UJMC (Unisda Journal of Mathematics and Computer Science) Vol 8 No 2 (2022): Unisda Journal of Mathematics and Computer science
Publisher : Mathematics Department, Faculty of Mathematics and Sciences Unisda Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52166/ujmc.v8i2.3274

Abstract

A ring can be formed into a new ring, called a polynomial ring or what is often called an ring. For is a polynomial ring which is often referred to as an integer polynomial ring modulo n. The polynomial ring of R is the set of all polynomials with constants in the form of elements in . In 2019 Maulana et al discussed the prime ideal properties of Gaussian integers. In this article, we will give a comparison of the prime ideal properties in the modulo integer polynomial ring with the integer polynomial ring, where if the prime ideal in integers is not necessarily prime ideal in the modulo integer ring.
Diagonalisasi Operator Linear Muhammad Naoval Husni
UJMC (Unisda Journal of Mathematics and Computer Science) Vol 8 No 2 (2022): Unisda Journal of Mathematics and Computer science
Publisher : Mathematics Department, Faculty of Mathematics and Sciences Unisda Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52166/ujmc.v8i2.3498

Abstract

There are many problems in finding a basis for consisting of the eigenvectors of a square matrix. These bases can be used to study the geometric properties of A and simplify various numerical calculations involving A. These bases are also important in various applications, one of which is from these bases we can derive the properties of vector spaces one of which is that each eigenspace is a subspace of its vector space. The problem of finding a basis consisting of eigenvectors is equivalent to the diagonalization problem. The author of this article will, the diagonalization of linear operators.
Model Matematika Perencanaan dan Pengadaan Obat di Instalasi Farmasi Rumah Sakit dengan Menggunakan Aljabar Max Plus Dian Mustofani; Umul Farida; Bagus Yuli Ariadhita
UJMC (Unisda Journal of Mathematics and Computer Science) Vol 8 No 2 (2022): Unisda Journal of Mathematics and Computer science
Publisher : Mathematics Department, Faculty of Mathematics and Sciences Unisda Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52166/ujmc.v8i2.3511

Abstract

In pharmaceutical installations, drugs need to be managed in order to facilitate and speed up services where the management is a series of activities including planning, procuring, storing, and distributing. Planning in the management of pharmaceutical installations is the main thing that needs to be considered, this is because planning is a determinant of success for subsequent activities. In addition, to avoid drug shortages, more careful planning must be carried out. The purpose of this research is to make Petri Net and Max Plus Algebra models which are useful for managing scheduling planning and procurement of oral drugs in Hospital Pharmacy Installations. The data used in this study is secondary data from the results of records in the Pharmacy Installation of the Dental and Oral Hospital, Bhakti Wiyata Health Sciences Institute in 2021. The results obtained from Petri Net are the Max Plus Algebra model which shows the maximum time for ordering oral drugs. so that drug vacancies in a hospital can be avoided. Conclusions and suggestions from the results of this study obtained a mathematical model that aims to provide convenience in planning and procurement of drugs in hospital installations so that they are on time and do not experience delays in drug procurement. Dalam instalasi farmasi obat perlu dikelola agar memudahkan dan mempercepat pelayanan dimana pengelolahannya merupakan sebuah rangkaian kegiatan diantaranya adalah merencanakan, mengadakan, menyimpan, dan mendistribusikan. Perencanaan dalam pengelolahan instalasi farmasi merupakan hal utama yang perlu diperhatikan, hal ini dikarenakan perencanaan merupakan penentu keberhasilan untuk kegiatan selanjutnya. Selain itu untuk menghindari terjadinya kekosongan obat, harus dilakukan perencanaan yang lebih teliti. Tujuan penelitian ini adalah membuat Petri Net dan model Aljabar Max Plus yang berguna untuk mengatur penjadwalan perencanaan dan pengadaan obat oral di Instalasi Farmasi Rumah Sakit. Data yang digunakan dalam penelitian ini adalah data sekunder dari hasil pencatatan yang ada di Instalasi Farmasi Rumah Sakit Gigi dan Mulut Institut Ilmu Kesehatan Bhakti Wiyata pada tahun 2021. Hasil yang diperoleh dari Petri Net tersebut adalah model Aljabar Max Plus yang menunjukkan waktu maksimum pemesanan obat oral sehingga kekosongan obat di suatu Rumah Sakit dapat terhindari. Kesimpulan dan saran dari hasil penelitian ini diperoleh model matematika yang bertujuan untuk memberikan kemudahan dalam perencanaan dan pengadaan obat di instalasi Rumah Sakit agar tepat waktu dan tidak mengalami keterlambatan dalam pengadaan obat.
Pengaruh Tipe Kepribadian dan Karakter Siswa (Koleris, Plegmatis, Sanguinis dan Melankolis) Terhadap Pemahaman Konsep Bentuk Segiempat Frida Murtinasari; Lutfiyah Lutfiyah
UJMC (Unisda Journal of Mathematics and Computer Science) Vol 8 No 2 (2022): Unisda Journal of Mathematics and Computer science
Publisher : Mathematics Department, Faculty of Mathematics and Sciences Unisda Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52166/ujmc.v8i2.3553

Abstract

Penelitian ini bertujuan untuk mengetahui pengaruh Pengaruh Tipe Kepribadian dan Karakter Siswa (Koleris, Plegmatis, Sanguinis dan Melankolis) Terhadap Pemahaman Konsep Bentuk Segiempat. Penelitian ini menggunakan pendekatan penelitian kuantitatif dengan metode penelitian expost facto. Dalam penelitian ini diperoleh hasil rata-rata skala CRI dengan jawaban benar dan prosentase miskonsepsi masing-masing siswa berdasarkan karakternya adalah 1) koleris sebesar 4,4 dan 2,56% , 2) plegmatis sebesar 3,36 dan18,04 % , 3) sanguinis sebesar 2,58 dan 36,4 % , dan 4) melankolis sebesar 4,28 dan 2,82% . Hal tersebut menujukkan bahwa siswa koleris memiliki keyakinan dan pemahaman yang paling tinggi dibandingkan dengan siswa dengan karakter yang lain. Sedangkan hasil dari analisis data diperoleh nilai dari signifikansi F yaitu 0,0066 ≤∝ = 0,05 yang artinya karakter siswa sangat berpengaruh secara signifikan terhadap pemahaman konsep bentuk segiempat dan juga nilai dari R-square sebesar 0,98 yang artinya berkorelasi kuat dan mempengaruhi secara positif sebesar 98 %.
Analisis Cluster Ward Pada Pengelompokan Wilayah Puskesmas Di Kota Kediri Berdasarkan Penyakit Tidak Menular ahmad afif
UJMC (Unisda Journal of Mathematics and Computer Science) Vol 8 No 2 (2022): Unisda Journal of Mathematics and Computer science
Publisher : Mathematics Department, Faculty of Mathematics and Sciences Unisda Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52166/ujmc.v8i2.3567

Abstract

Abstrak. Penyakit tidak menular menjadi penyebab kematian tertinggi di Indonesia. Kegiatan skrining atau deteksi dini dan pemantauan faktor resiko penyakit tidak menular sangat penting dilakukan sebagai upaya pencegahan dan pengendalian di suatu wilayah. Penelitian ini bertujuan untuk mengelompokan wilayah Puskesmas di Kota Kediri dan mengetahui karakteristik dari setiap kelompok yang terbentuk. Metode penelitian ini adalah penelitian kuantitatif menggunakan data sekunder. Data penelitian didapatkan dari pencatatan jumlah kasus penyakit tidak menular yang terdapat di 9 Puskesmas Induk dan 1 Puskesmas Perawatan Kota Kediri tahun 2019. Teknik analisis statistika yang digunakan adalah analisis cluster ward. Variabel penyakit tidak menular meliputi kardiovaskuler, kanker, obesitas, diabetes mellitus, penyakit paru obstruktif kronik, stroke, asma bronkiale, hipertensi, gagal jantung dan ginjal kronik. Hasil penelitian menunjukkan pengelompokan wilayah Puskesmas di Kota Kediri berdasarkan kesamaan karakteristik dari jumlah kasus penyakit tidak menular tahun 2019 adalah 3 kelompok, yaitu kelompok 1 terdiri dari 3 Puskesmas, kelompok 2 terdiri dari 4 Puskesmas dan kelompok 3 terdiri dari 2 Puskesmas. Kesimpulan dan saran berdasarkan karakteristik dari masing – masing kelompok, diperoleh kelompok 1 memiliki jumlah kasus penyakit tidak menular terendah, kelompok 2 sedang dan kelompok 3 tertinggi. Sehingga disarankan kelompok 3, yaitu Puskesmas Sukorame dan Pesantren II harus lebih optimal dalam mengurangi jumlah kasus penyakit tidak menular. Kata Kunci : penyakit tidak menular; puskesmas; ward
Forecasting Tingkat Inflasi Year-on-Year Indonesia Dengan Metode Weighted Moving Average (WMA) Wigid Hariadi; Sulantari Sulantari
UJMC (Unisda Journal of Mathematics and Computer Science) Vol 8 No 2 (2022): Unisda Journal of Mathematics and Computer science
Publisher : Mathematics Department, Faculty of Mathematics and Sciences Unisda Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52166/ujmc.v8i2.3576

Abstract

Abstract. The weighted moving average (WMA) method is a method of calculating data forecasting values through moving average values that are given different weights for each time period. The Covid-19 pandemic has had a considerable impact on the State of Indonesia. Not only from the health sector of the residents, but also the economic sector of the residents was also quite badly affected. This economic impact can be felt from the rising prices of goods needed by the community and in addition to the increasingly deteriorating financial conditions of the community. Not yet recovered due to the Covid-19 pandemic, there was a war between Russia and Ukraine in 2022 which helped balance the inflation rate in Indonesia. This is because the war made the price of fuel and wheat commodities increase more and more expensive. This inflation rate is one indicator of economic growth in a country, and is very influential on the economic growth of a country. Because of this, it is important for us to be able to know the projection (data forecast) of the inflation rate for the next several periods. This is intended so that related parties can prepare the right strategy in dealing with the inflation rate. From the results of the study, it was concluded that a good Weighted Moving Average model for predicting Indonesia's year on year inflation rate is a 3rd order WMA model with a weight of 0.65; 0.2; 0.15, with an MSE value of 0.2632, MAD of 0.3549, and a MAPE value of 0.1114 or (11.14%). Indonesia's YoY inflation forecast for the next 4 months, namely: In December 2022 it was 5.56, January 2023 it was 5.55, February 2023 it was 5.53, and in March 2023 it was 5.54. Keywords: Weighted Moving Average, WMA, Inflation. Abstrak. Metode weighted moving average (WMA) adalah metode menghitung nilai peramalan data melalui nilai rata-rata bergerak yang diberikan bobot yang berbeda untuk tiap-tiap periode waktunya. Pandemi covid-19 memberikan dampak yang cukup besar bagi Negara Indonesia. Tidak hanya dari sektor kesehatan warganya, namun juga sektor perekonomian warga juga ikut terdampak cukup parah. Dampak ekonomi ini dapat dirasakan dari naiknya harga barang-barang kebutuhan masyarakat dan di tambah lagi kondisi keuangan masyrakat yang semakin memburuk. Belum pulih akibat pandemic covid-19, terjadi peristiwa perang antara Rusia dengan Ukraina pada tahun 2022 yang ikut menymbang Tingkat Inflasi di Indonesia. Hal ini disebabkan karena perang tersebut membuat harga BBM dan komoditas gandum meningkat semakin mahal. Tingkat inflasi ini menjadi salah satu indicator pertumbuhan ekonomi di suatu Negara, dan sangat berpengaruh terhadap pertumbuhan ekonomi suatu Negara. Karena hal itu, penting kiranya kita untuk dapat mengetahui proyeksi (peramalan data) tingkat inflasi untuk beberapa periode kedepan. Hal ini bertujuan agar pihak terkait dapat mempersiapakan strategi yang tepat dalam menangani laju tingkat inflasi. Dari hasil penelitian, diperoleh kesimpulan bahwa Model Weighted Moving Average yang baik untuk memprediksi nilai inflasi year on year Indonesia adalah model WMA orde 3 dengan Bobot 0.65; 0.2; 0.15, dengan nilai MSE sebesar 0.2632, MAD sebesar 0.3549, dan nilai MAPE sebesar 0.1114 atau (11.14%). Forecasting inflasi YoY Indonesia selama 4 bulan berikutnya, yaitu: Pada bulan Desember 2022 sebesar 5.56, Januari 2023 sebesar 5.55, Februari 2023 sebesar 5.53, dan pada Maret 2023 sebesar 5.54. Kata kunci: Weighted Moving Average, WMA, inflasi.
Penentuan Premi Tahunan Dan Cadangan Manfaat Asuransi Jiwa Dwiguna Murni pada Status Last Survivor dengan Tiga Orang Tertanggung Fika Riza Syifamillah; Emy Siswanah; Seftina Diyah Miasary
UJMC (Unisda Journal of Mathematics and Computer Science) Vol 8 No 2 (2022): Unisda Journal of Mathematics and Computer science
Publisher : Mathematics Department, Faculty of Mathematics and Sciences Unisda Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52166/ujmc.v8i2.3693

Abstract

Last-survivor life insurance is life insurance with more than one life (multiple life) in which premium payments end when the policyholder dies for the last time. Last-survivor status can be applied to various types of insurance, including pure endowment life insurance. Pure endowment life insurance is insurance that provides a death benefit if the insured is still alive within the agreed timeframe. Furthermore, two costs that insurance companies must consider are the amount of premiums and benefit reserves. The premium is the amount of money paid by the insurer to the insurer for their participation in the insurance, while the benefit reserve is the amount of funds that the insurance company needs to prepare to pay losses to the participant during the coverage period. The purpose of this study is to calculate the annual premiums and reserves for pure endowment life insurance benefits based on last survivor status for three insured people. Based on the results of calculating the benefit reserve using the prospective method, the older the insurance member, the lower (smaller) the chance of survival. That is, the greater the likelihood that the three members will die before the insurance contract expires, the less likely the insurance company will pay the sum insured. This causes the premium to be paid to be smaller. The value of the benefit reserve from the initial year of insurance to the end of the insurance contract period, which is the 25th year, is getting smaller every year.
Polinomial Kromatik Graf Bunga Risang Narendra
UJMC (Unisda Journal of Mathematics and Computer Science) Vol 8 No 2 (2022): Unisda Journal of Mathematics and Computer science
Publisher : Mathematics Department, Faculty of Mathematics and Sciences Unisda Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52166/ujmc.v8i2.3713

Abstract

In this study, the class of a graph called Flower Graph was discussed. Flower Graph is a special way in a graphic. A graph G is called a flower chart-. This graph will be symbolized by . Then, it is defined by a flower chart-, with the petal to which in a flower graph-, by -petal removed, for . Flower graphics-: with petal as much as is denoted by . Chromatic polynomial is the amount of forms to color the point in graph G with color, where there are no two points that fit to obtain the same color. In the end, using the reduction theorem, the chromatic polynomial theorem of the Sikel chart and the chromatic polynomial graphic of the chromatic polynomial tree of a flower chart obtained.

Page 10 of 13 | Total Record : 129