cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
JURNAL SELULOSA
ISSN : -     EISSN : -     DOI : -
Core Subject : Education,
Jurnal Selulosa (JSel) is a journal that provides scientific information resources aimed at researchers and engineers in academia, research institutions, government agencies, and industries. Jurnal Selulosa publishes original research papers, review articles and case studies focused on cellulose, cellulose derivatives, pulp technology, paper technology, environment, biorefinery and other related topics. Formerly known as Berita Selulosa, and the first publication was in 1965. Since 2011, the journal renamed to Jurnal Selulosa.
Arjuna Subject : -
Articles 204 Documents
Sintesis Micro-Fibrillated Cellulose dari Serat Tandan Kosong Sawit dengan Hidrolisis Asam Oksalat Rizka Karima; Evana Yuanita; Bunda Amalia; Agustina Arianita; Tiara Mailisa; Bumiarto Nugroho
JURNAL SELULOSA Vol 10, No 01 (2020): JURNAL SELULOSA
Publisher : Center for Pulp and Paper

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25269/jsel.v10i01.281

Abstract

Tandan Kosong Sawit (TKS) merupakan limbah padat dari industri pengolahan kelapa sawit yang melimpah di Indonesia dan mengandung banyak selulosa. Microfibrillated cellulose (MFC) dapat diproduksi dari serat TKS. Tujuan dari penelitian ini adalah untuk mensintesis MFC dari serat TKS melalui proses alkalisasi,  pemutihan dan hidrolisis. TKS dicacah dan dihaluskan hingga berukuran 60 mesh untuk proses pembuatan pulp TKS. Proses alkalisasi dilakukan dalam reaktor menggunakan 4% NaOH pada suhu 90˚C selama 2 jam dan dilanjutkan dengan proses pemutihan mengunakan 20% H2O2 pada suhu kamar selama 2 jam. Kemudian proses hidrolisis dilakukan menggunakan asam oksalat 5% pada suhu 80°C selama 1 jam. MFC yang dihasilkan dianalisis menggunakan Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Difraction (XRD), Thermal Gravimetric Analysis (TGA) dan Field Emission Scanning Electron Microscopy (FESEM). Hasil analisis FTIR menunjukkan bahwa adanya penurunan kadar lignoselulosa yang dikonfirmasi juga oleh hasil uji kuantitatif kadar lignin. Hasil uji XRD menunjukkan peningkatan nilai kristalinitas. Hasil uji TGA menunjukkan hidrolisis menggunakan asam oksalat 5% dapat meningkatkan area degradasi termal dan hasil FESEM menunjukkan telah terjadi proses fibrilisasi serat dan penurunan diameter ukuran serat dari 400 µm menjadi 10 µm. Dari hasil penelitian ini, jika dilihat dari hasil kristalinitas, sifat termal dan ukuran diameter serat, proses hidrolisis menggunakan asam oksalat 5% adalah proses yang baik untuk pembuatan MFC dari serat TKS. Synthesis of Micro-Fibrillated Cellulose (MFC) from Oil Palm Empty Fruit Bunches (OPEFB) Fiber with Oxalic Acid HydrolysisAbstractOil Palm Empty Fruit Bunches (OPEFB), which is a solid waste from the palm oil processing industry, has a high availability in Indonesia, and it contains a lot of cellulose. Microfibrillated cellulose (MFC) can be produced from OPEFB fiber. This work’s objective was to synthesize MFC from fibers of OPEFB through the process of alkalization, bleaching process, and the hydrolysis process using an oxalic acid solution. The procedure began chopped fiber until 60 mesh, and alkalization process of pulping OPEFB in the reactor using 4% NaOH at the temperature of 90 ˚C for 2 hours. It continued with the addition of 20% H2O2 at room temperature for 2 hours. The hydrolysis process is carried out using an oxalic acid 5 % at temperature of 80°C for 1 hour. MFC was analyzed using Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermal Gravimetric Analysis (TGA), and Field Emission Scanning Electron Microscopy (FESEM). The FTIR analysis showed that the quantitative result also confirmed a decrease in lignocellulose content. XRD result showed an increase in the value of crystallinity. TGA results showed that hydrolysis using oxalic acid can increase the area of thermal degradation, and FESEM results showed there is a decreasing diameter of fiber from 400 µm to 10 µm. From the results of this study, when viewed from the results of crystallinity, thermal properties, and size of the fiber diameter, the hydrolysis process using 5% oxalic acid is a good process for making MFCs from TKS fibers.
Produksi Bahan Bakar Minyak dari Pirolisis Pelet Hydropulper Reject Industri Kertas Syamsudin Syamsudin; Ibrahim Syaharuddin; Andri Taufick Rizaluddin; Reza Bastari Imran Wattimena
JURNAL SELULOSA Vol 10, No 02 (2020): JURNAL SELULOSA
Publisher : Center for Pulp and Paper

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25269/jsel.v10i02.306

Abstract

Konsumsi kertas bekas di industri kertas Indonesia mencapai 6.598.464 ton/tahun dan menghasilkan hydropulper reject sebesar 5-10% dari kertas bekas yang digunakan. Penelitian pirolisis hydropulper reject dari industri kertas untuk produksi bio-oil telah dilakukan. Tipikal limbah hydropulper reject terdiri dari 20% serat dan 80% plastik (High Density Polyethylene, HDPE >90%). Bahan padat tersebut berpotensi dikonversi menjadi bahan bakar minyak melalui proses pirolisis. Penelitian ini bertujuan mengevaluasi pirolisis pelet hydropulper reject untuk produksi bio-oil sebagai bahan bakar minyak. Setelah dipisahkan dari logam, hydropulper reject dikeringkan, dicacah, dan dibentuk menjadi pelet berdiameter 10 mm dan panjang 20-30 mm. Nilai kalor pelet hydropulper reject mencapai 29,30 MJ/kg (dried based, db) dengan kadar zat terbang 84,84% (db). Pelet hydropulper reject dipirolisis dengan reaktor kombinasi pembakaran-pirolisis. Produk yang dihasilkan berupa bio-oil mampu bakar sebanyak ±40% bahan baku dengan nilai kalor 77,79 MJ/kg. Perkiraan listrik yang dapat dihasilkan dari pemanfaatan syngas sebesar 1,08 kWh/kg hydropulper reject.Kata kunci: hydropulper reject, pirolisis, bio-oil, syngas, listrikProduction of Oil Fuel From Pyrolysis of Hydropulper Reject Pellet from Paper IndustryAbstract Waste paper consumption in Indonesian paper industries reached 6,598,464 tons/year and produced hydropulper reject about 5-10% of waste paper. Pyrolysis of hydropulper reject from the paper industry for bio-oil production has been investigated. Hydropulper reject consists of 20% fiber and 80% plastic (High Density Polyethylene, HDPE>90%). This solid material has potential to be converted into oil fuel through pyrolysis. This study aims to investigate the pyrolysis of hydropulper reject pellets for bio-oil as fuel oil production. After being separated from the metals, hydropulper reject was dried, shredded, and shaped into pellets with 10 mm diameter and 20-30 mm length. The pellets had calorific value of 29.30 MJ/kg (dried based, db) with volatile matter 84.84% (db). The pellets were pyrolized with a combustion-pyrolysis combination reactor. The product was combustible bio-oil as much as ±40% of feedstock and had calorific value of 77.79 MJ/kg. Estimated electricity generated from syngas utilization about 1.08 kWh/kg.  Keywords: hydropulper reject, pyrolysis, bio-oil, syngas, electricity 
Studi Kasus Proyek Co-Benefit Peningkatan Efisiensi Boiler Batubara di Industri Kertas Syamsudin Syamsudin; Katsushige Takami; Shoji Kita; Yusup Setiawan; Reza Bastari Imran Wattimena; Andri Taufick Rizaluddin
JURNAL SELULOSA Vol 10, No 01 (2020): JURNAL SELULOSA
Publisher : Center for Pulp and Paper

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25269/jsel.v10i01.296

Abstract

Pertumbuhan industri yang pesat menyebabkan masalah emisi gas rumah kaca. Kegiatan co-benefit peningkatan efisiensi boiler batubara telah dilakukan di industri kertas dalam proyek “Co-benefit Indonesia Tahun 2018” dari Kementerian Lingkungan Hidup Jepang dengan tujuan melakukan identifikasi langkah-langkah yang terkait dengan konservasi energi dan penurunan polutan emisi boiler industri berbahan bakar batubara dan cara melakukannya. Identifikasi meliputi analisis efisiensi termal boiler, pengukuran kadar air batubara, pengukuran kualitas air umpan boiler, air blowdown, dan kondensat, pemeriksaan insulasi panas, pengaturan rasio udara pembakaran, dan pengendalian operasi multi boiler. Berbagai kehilangan panas dianalisis dan beberapa rekomendasi diberikan untuk implementasi di pabrik sehingga efisiensi boiler dapat ditingkatkan. Beberapa masalah yang perlu diperbaiki untuk konservasi energi meliputi penggunaan batubara dengan kadar air tinggi, rasio udara pembakaran tinggi, konduktivitas air umpan tinggi menyebabkan rasio blowdown tinggi, tidak dilakukan insulasi pada mesin produksi yang relatif tua, dan pengoperasian beberapa boiler dengan efisiensi rendah. Potensi perbaikan melalui penyesuaian kadar air batubara, perbaikan rasio udara pembakaran, optimalisasi rasio blowdown, pemulihan air kondensat, pemasangan insulasi, dan kontrol multi boiler secara teori menghasilkan reduksi konsumsi batubara 16.445 ton/tahun atau 48,63%, dan reduksi CO2 sebesar 19.589 tCO2/tahun dengan estimasi penghematan biaya Rp 12 milyar/tahun. Kata kunci: co-benefit, industri kertas, boiler, batubara, emisi.Case Study of Co-Benefit Project Improvement of Coal Boiler Efficiency in The Paper IndustryABSTRACT Industrial rapid growth has caused greenhouse gas emissions problems. Co-benefit activities to improve the efficiency of coal boilers have been carried out in paper industry in the project of “Co-benefit Indonesia FY 2018” from the Japan Ministry of Environment aimed at identifying required steps to save energy and reduction of pollutant emission from the coal-fired industrial boilers and how to achieve it. Identification include analysis of boiler thermal efficiency, coal moisture content measurement, boiler feed water, blowdown water and condensate quality measurement, heat insulation examination, combustion air ratio management, and control of multiple boiler operations. Various heat losses have been analyzed and some recommendations have been proposed to be implemented by factory management to improve boiler efficiency. There are several issues that need to be addressed for energy conservation, namely: high water content coal utilization, high combustion air ratio, high conductivity feed water which causes high blowdown ratios, no insulation on relatively old production machines, and operational of several low efficiency boilers. The results of the co-benefit identification indicated that the potential for corrective action by adjusting the coal water content, improving the combustion air ratio, optimizing the blowdown ratio, recovering condensate water, installing insulation, and controlling multiple boilers theoretically can result coal consumption reduction of 16,445 tons/year or 48.63%, and CO2 reduction of 19,589 tCO2/year with an estimated cost savings of Rp 12 billion/year.
Dissolving Pulp dari Kayu dan Nonkayu: Tinjauan Proses Pembuatan dan Karakteristiknya Reynaldo Biantoro; Krisna Septiningrum; Teddy Kardiansyah
JURNAL SELULOSA Vol 10, No 01 (2020): JURNAL SELULOSA
Publisher : Center for Pulp and Paper

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25269/jsel.v10i01.294

Abstract

Pemanfaatan derivat selulosa menjadi viskosa rayon saat ini berkembang secara signifikan; dalam hal ini pulp khusus yang digunakan adalah dissolving pulp. Dissolving pulp ini memiliki karakteristik tertentu seperti kandungan selulosa tinggi (> 90%), kadar hemiselulosa rendah, lignin dan kandungan ekstraktif (kurang dari 10%), reaktivitas selulosa tinggi dengan tingkat distribusi berat molekul dan kecerahan tinggi, serta memiliki viskositas sekitar 200-300 dm3/kg. Saat ini, pembuatan dissolving pulp diarahkan untuk penggunaan bahan baku kayu dan non-kayu yang melimpah dengan menggunakan metode ramah lingkungan. Secara umum terdapat empat metode utama termasuk teknologi konvensional dan terbaru yang dapat digunakan untuk membuat dissolving pulp seperti: 1. Metode bisulfit menggunakan gas SO2 dengan yield sekitar 55 -75%; 2. Metode sulfit-soda yang mampu menghasilkan kandungan selulosa yang tinggi (hingga 96%); 3. Pra-hidrolisis kraft yang merupakan metode populer dalam pembuatan dissolving pulp dan 4. Konversi pulp kertas menjadi dissolving pulp. Dalam makalah ini dibahas pembuatan dissolving pulp menggunakan enzim seperti xilanase dan mono komponen endoglukanase dan kombinasi antara mekanik, kimia dan metode enzimatik. Kata kunci: dissolving pulp, pra-hidrolisis kraft, enzim, konversi pulp kertas
Pengaruh Alkali Aktif terhadap Karakteristik Pulp Kraft Putih Acacia mangium dan Eucalyptus pellita Teddy Kardiansyah; Susi Sugesty
JURNAL SELULOSA Vol 10, No 01 (2020): JURNAL SELULOSA
Publisher : Center for Pulp and Paper

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25269/jsel.v10i01.291

Abstract

Industri pulp Indonesia saat ini memiliki masalah dalam penyediaan bahan baku kayu Acacia mangium, karena serangan penyakit tanaman dan hama. Hal ini harus diantisipasi melalui bahan baku alternatif pengganti Acacia mangium, spesies Eucalyptus pellita dipilih karena lebih tahan terhadap hama dan penyakit. Penelitian ini dilakukan untuk mengetahui karakteristik kualitas pulp kraft putih E. Pellita. Penelitian pembuatan pulp kertas dilakukan dengan proses kraft dengan bahan baku A. mangium dan E. pellita. Pemasakan dilakukan dengan variasi alkali aktif 16-20%, sulfiditas 28,7%, pada suhu 165 °C, rasio larutan pemasak terhadap kayu 3,5:1 dan faktor H 1.022. Pemutihan pulp dilakukan dengan proses ECF (Elemental Chlorine Free) dengan tahapan OD0EoD1. Karakteristik pulp kraft hasil pemasakan A. mangium lebih tinggi pada parameter rendemen tersaring, bilangan kappa dan viskositas dibandingkan dengan E. pellita. Penggunaan alkali aktif 16% pada pemasakan A. mangium lebih rendah dari  E. pellita (18%), namun kualitasnya dapat memenuhi spesifikasi kualitas pulp kraft putih sesuai SNI 6107:2015 (Pulp Kraft Putih Kayu daun) pada parameter derajat giling, derajat putih dan sifat fisik.  Karakteristik pulp kraft putih A. mangium lebih tinggi pada parameter derajat giling, derajat putih dan sifat fisik dibandingkan dengan E. pellita. Namun demikian E. pellita berpotensi untuk dikembangkan di Hutan Tanaman Industri sebagai bahan baku pulp.Effect of Active Alkali on Characteristic of Acacia mangium and Eucalyptus pellita Bleached Kraft PulpAbstractThe Indonesian pulp industry currently has problems in supplying Acacia mangium wood raw materials, due to plant disease and pest attacks. This could be anticipated through alternative raw materials to substitute Acacia mangium, the Eucalyptus pellita species chosen because it is more resistant to pests and diseases. This study was conducted to determine the quality characteristics of E. Pellita bleached kraft pulp. The research on making paper pulp using A. mangium and E. pellita was carried out by means of the kraft process. The cooking was carried out with a variation of 16-20% active alkali, 28.7% sulfidity, at a temperature of 165°C, a liquor to wood ratio of  3.5:1 and an H factor of 1.022. The bleaching of the pulp has been carried out using the ECF (Elemental Chlorine Free) process with the OD0EoD1 stage. Characteristics of kraft pulp from A. mangium cooking were higher in the screening yield, kappa number and viscosity compared to E. Pellita. The use of 16% active alkaline in cooking of  A. mangium is lower than E. pellita (18%), but the quality can meet the quality specifications of white kraft pulp according to SNI 6107: 2015 (White Kraft Leaf Wood Pulp) on the parameters of milled degree, whiteness and properties. The characteristics of A. mangium white kraft pulp were higher in parameters of grind degree, whiteness and physical properties compared to E. pellita. However, E. pellita has the potential to be developed in Industrial Plantation Forests as raw material for pulp. 
Telaah Potensi Penerapan Teknologi Terkini pada Hidrolisis Selulosa dengan Sistem Pengendalian Terintegrasi dalam Proses Bioetanol G2 Ditia, Anissa; Bardant, Teuku Beuna; Utami, Amaliyah Rohsari Indah; Maryana, Roni; Irawan, Yan; Muryanto, Muryanto; Triwahyuni, Eka; Sudiyani, Yanni
JURNAL SELULOSA Vol 11, No 01 (2021): JURNAL SELULOSA
Publisher : Center for Pulp and Paper

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25269/jsel.v11i01.320

Abstract

Kajian ini merangkum teknologi dan inovasi sistem pengendalian yang berpotensi diterapkan dalam intensifikasi proses hidrolisis selulosa pada produksi bioetanol G2. Telaah dimulai dari perkembangan terbaru intensifikasi produksi bioetanol secara umum. Hidrolisis selulosa adalah tahapan pembeda antara proses bioetanol G2 dan generasi sebelumnya. Perhatian utama dalam intensifikasi hidrolisis selulosa adalah pada bagaimana hidrolisis selulosa terintegrasi dengan sistem pengendalinya dan integrasi hidrolisis selulosa dengan bagian hulu (pretreatment) dan hilir (penyulingan). Keunikan proses ini adalah durasi kerja yang membutuhkan 48 jam dan viskositas campuran yang tergantung waktu. Bagian akhir telaah ini memetakan potensi penerapan teknologi dan inovasi terbaru yang telah dirangkum. Pemetaan berdasarkan potensi peningkatan efisiensi dan potensi tambahan investasi. Sakarifikasi Very High Gravity (VHG) pada kecepatan pengadukan optimum dan intermitten dinilai sebagai pilihan paling menarik bila intensifikasi dilakukan pada unit produksi yang telah berdiri. Namun jika intensifikasi untuk rancangan pabrik baru, maka tangki hidrolisis yang dirancang dengan simulasi CFD, dilengkapi dengan sekat (baffles) yang bergerak terkendali, dan rancangan batang pengaduk (impeller) paling cocok menurut simulasi adalah pilihan menarik. Rancangan ini kemudian diintegrasikan dengan sistem pengendali yang mampu memperkirakan perubahan viskositas. Review on Potency of Application Recent Technology in the Integrated Process and Control on Cellulose Hydrolysis in Bioethanol G2 Production ProcessAbstractThis review listed current technologies and innovations in the control system which potentially applied in the intensification of cellulose hydrolysis as part of 2nd Generation Bioethanol production process. The review started from the general latest innovations in the 2nd Generation Bioethanol. Cellulose hydrolysis as the main characteristics in the 2nd Generation of Bioethanol required further attention in the intensification. Especially in how to integrate cellulose hydrolysis with its control system and to integrate it with upstream and downstream units. The special requirements in cellulose hydrolysis are 48 hours agitation duration and time-dependent mixture viscosity. At the end of the review, listed technologies were assessed to be applied in the 2nd Generation Bioethanol. The assessment was based on their potency in increasing process efficiency and the potency of required investment if they are applied. A Very High Gravity (VHG) saccharification at optimum intermittent agitation speed was a promising innovation for cellulose hydrolysis if intensification was conducted onto the existing production plant. If intensification is conducted to a plant design, building an agitation tank according to best Computational Fluid Dynamic (CFD) simulation, complemented with controlled moving baffles and best suitable impeller design is a promising design for efficient hydrolysis. This agitation tank was then completed with the advanced available control system, which is capable to adapt the viscosity changes.
Optimasi Kadar Ultimate dan Tingkat Kebasaan Bio-arang Limbah Kayu Durian sebagai Pembenah Tanah Heri Soedarmanto; Evy Setiawaty; Taufik Iskandar
JURNAL SELULOSA Vol 11, No 02 (2021): JURNAL SELULOSA
Publisher : Center for Pulp and Paper

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25269/jsel.v11i02.332

Abstract

Konversi biomassa melalui pirolisis menghasilkan bio-arang, bio-minyak dan gas. Pirolisis biomassa dipengaruhi oleh kondisi pirolisis seperti bahan baku dan suhu pirolisis. Tujuan dari penelitian ini adalah menganalisis kondisi optimum kadar ultimate (CHO) dan pH bio-arang berdasarkan ukuran partikel bahan baku limbah kayu durian dan suhu pirolisis sebagai pembenah tanah. Limbah kayu durian yang digunakan dalam penelitian ini berukuran diameter 0,17–0,42 mm; 0,42–1,00 mm; dan 1,00–2,83 mm, dengan variasi suhu pirolisis 350°C, 450°C, dan 550°C sebanyak tiga kali ulangan. Optimasi menggunakan metode Response Surface Methodology. Berdasarkan model kuadratik, didapatkan kadar karbon optimum bio-arang sebesar 81,78% dengan ukuran partikel bahan baku pada 2,09 mm dan suhu pirolisis 530,5oC. Kadar hidrogen optimum bio-arang sebesar 3,35% dengan ukuran partikel bahan baku 2,89 mm dan suhu pirolisis 547,4oC. Kadar oksigen optimum bio-arang sebesar 12,22% dengan ukuran partikel bahan baku 1,89 mm dan suhu pirolisis 529,5oC. pH optimum bio-arang sebesar 8,35 dengan ukuran partikel bahan baku 0,6 mm dan suhu pirolisis 521,8oC. Kondisi proses terbaik untuk menghasilkan kadar ultimate dan pH yang paling optimal berada pada range ukuran diameter bahan baku 0,6 mm–2,89 mm dan suhu pirolisis sebesar 521,8oC–547,4oC.  The Optimization of Ultimate Levels and Basicity of Durian Wood Waste Biochar as Soil AmendmentAbstractBiomass conversion through pyrolysis produces biochar, bio-oil and gas. Pyrolysis of biomass is influenced by pyrolysis conditions such as raw materials and pyrolysis temperature. The purpose of this study was to analyze the optimum conditions for ultimate levels (CHO) and pH of biochar based on the particle size of the durian wood waste and the pyrolysis temperature as soil amendment. Particle sizes of durian waste were 0.17–0.42 mm; 0.42–1.00 mm; and 1.00–2.83 mm in diameter where pyrolysis temperatures were 350°C; 450°C; and 550°C. Optimization was used by the Response Surface Methodology method. Based on the quadratic model, the optimum carbon content of biochar was 81.78% with the particle size at 2.09 mm and the pyrolysis temperature of 530.5oC. The optimum hydrogen content of biochar was 3.35% with a particle size of 2.89 mm and a pyrolysis temperature of 547.4oC. The optimum oxygen content of biochar was 12.22% with a particle size of 1.89 mm and a pyrolysis temperature of 529.5oC. The optimum pH of biochar was 8.35 with a particle size of 0.6 mm and a pyrolysis temperature of 521.8oC. The most optimal ultimate levels and pH were in the diameter size range of 0.6 mm-2.89 mm and pyrolysis temperature of 521.8oC-547.4oC.
Ketahanan Batang Kelapa Sawit Diimpregnasi Resin Pinus dan Serbuk Kayu Surian Terhadap Rayap dan Cuaca Jessica Gita Adjani; Anne Hadiyane; Tati Karliati; Atmawi Darwis; Viona Febrinisa Mukhsin
JURNAL SELULOSA Vol 11, No 02 (2021): JURNAL SELULOSA
Publisher : Center for Pulp and Paper

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25269/jsel.v11i02.333

Abstract

The Resistance of Pine Resin and Surian Wood Sawdust Impregnated Oil Palm Stem Against Termite and WeatheringAbstractImpregnation substances into the oil palm trunks are one way to improve the oil palm trunk quality. This paper studies the optimum formulation of oil palm trunk impregnanted pine resin and Surian sawdust against dry-wood and subterranean termites as well as weathering performance. Impregnant concentration variations were mixtures of Tusam resin and Surian wood sawdust of 0% (RS0), 4% (RS1), 6% (RS2), and 8% (RS3) with three replications. Dry-wood termite test, subterranean termite test, and weather resistance test were carried out for 12 weeks of observation. The results showed that RS3 treatments were the optimum formulation of impregnated material used for oil palm trunk based on its resistance against dry-wood and subterranean termites resistance, while RS0 treatments were the optimum formula for weathering performances.Keywords: impregnation, oil palm trunk, pine resin, sawdust, Surian woodAbstrakSalah satu upaya untuk meningkatkan kualitas batang kelapa sawit adalah melalui impregnasi dengan resin pinus dan serbuk kayu Surian. Penelitian ini bertujuan untuk menentukan formulasi optimum impregnan batang kelapa sawit terhadap serangan rayap kayu kering dan rayap tanah serta ketahanan terhadap cuaca. Variasi konsentrasi impregnan yang digunakan yaitu campuran resin pinus dan serbuk kayu Surian 0% (RS0), 4% (RS1), 6% (RS2), dan 8% (RS3). Uji ketahanan rayap kayu kering, uji rayap tanah, dan uji ketahanan terhadap cuaca dilakukan selama 12 minggu pengamatan. Hasil penelitian menunjukkan bahwa konsentrasi optimum bahan impregnan batang kelapa sawit terimpregnasi terhadap ketahanan rayap kayu kering dan rayap tanah adalah formula RS3, sedangkan formulasi impregnan ketahanan cuaca optimum adalah batang kelapa sawit dengan formula RS0.Kata kunci: impregnasi, batang kelapa sawit, resin pinus, serbuk kayu, kayu Surian 
Cellulose Microfibers from Salacca Midrib Fiber Isolated by the Mechanical Treatment Venditias Yudha; Ferriawan Yudhanto; Heru Santoso Budi Rochardjo; Satriawan Dini Hariyanto
JURNAL SELULOSA Vol 11, No 01 (2021): JURNAL SELULOSA
Publisher : Center for Pulp and Paper

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25269/jsel.v11i01.319

Abstract

Salacca midrib fibers are abundant natural waste in Turi, Sleman Regency, Daerah Istimewa Yogyakarta. Cellulose Microfibers from the salacca midrib fiber has been isolated by mechanical treatment and successfully has good physical characteristics. Cellulose fibers with micro sizes can strengthen the bond effect between the matrix and the fiber due to the vast contact area. The method for isolated cellulose microfibers by mechanical treatment for speed rotation of 5000, 10000 and 15000 rpm. Mechanical stirrer treatment aims to fibrillation and reduces fiber dimensions because of their high rotation. The characterization by XRD, FTIR, and SEM. The XRD results showed that the mechanical stirrer treatment did not damage the crystallinity index of cellulose microfibers. The crystallinity index of the raw material is 64.3%, increased to 79.1% for the microfiber cellulose crystallinity index. Identification of functional groups using FTIR did not show changes in cellulose compounds resulting from mechanical treatment. Morphological observation of fibers by SEM shows that the diameter cellulose microfibers size obtained from salacca midrib fiber ranges 5-10 µm with 100-300 µm in length. Cellulose microfibers have potential materials as reinforcement in the micro composite and extraction into nanocellulose materials.
Karakterisasi Nitroselulosa dari Pulp Larut Bambu Beema dan Bambu Industri Frederikus Tunjung Seta; Susi Sugesty; Reynaldo Biantoro
JURNAL SELULOSA Vol 9, No 01 (2019): JURNAL SELULOSA
Publisher : Center for Pulp and Paper

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25269/jsel.v9i01.241

Abstract

Saat ini Indonesia masih mengandalkan impor nitroselulosa sebagai bahan baku propelan. Tujuan penelitian ini adalah mencari komposisi optimum pembuatan nitroselulosa untuk propelan dari bahan baku pulp larut bambu Beema dan Industri sebagai alternatif dari pulp larut kayu. Sebelum proses nitrasi, pulp larut bambu Beema dan bambu Industri mengalami proses perlakuan awal dengan menggunakan willey mill, pulp larut kemudian diayak dan diambil pulp dengan ukuran kurang dari 60 mesh. Pada proses nitrasi, perbandingan bahan kimia yang digunakan adalah formula 1 (HNO3:HNO3 Fumming:H2SO4= 2,5:1:9,5), formula 2 (HNO3:HNO3 Fumming:H2SO4= 3:1:7,5), dan formula 3 (HNO3:HNO3 Fumming:H2SO4= 1:1:1,6). Hasil yang didapatkan pada penelitian ini pulp larut dari bahan baku bambu Beema dengan formula 3 mampu mendapatkan kadar nitrogen tertinggi (12,97%). Analisis Fourier-transform infrared spectroscopy (FTIR) menunjukkan adanya gugus nitro dan pada uji bakar juga menunjukkan bahwa nitroselulosa dapat terbakar dengan cepat. Akan tetapi, nilai kelarutan dalam aseton dan eter-alkohol nitroselulosa dari kedua jenis bambu menunjukkan bahwa distribusi kadar nitrogen pada proses nitrasi masih belum memenuhi standar.Kata kunci: bambu, kadar nitrogen, nitroselulosa, pulp larut, propelanCharacterization of Nitrocellulose from Beema Bamboo and Industrial Bamboo Dissolving PulpAbstractCurrently, Indonesia still relies on imports of nitrocellulose as a propellant raw material. The objective of this research is to determine the optimum composition of nitrocellulose making for propellant from Beema bamboo pulp and Industrial bamboo pulp as an alternative of dissolving pulp from wood. Prior to the nitration process, both dissolving pulp of Beema bamboo and industrial undergo a pretreatment process using willey mill, the pulp then sieved and taken with a size less than 60 mesh. In the nitration process, the chemical composition used is  formula 1 (HNO3: HNO3 Fumming: H2SO4 = 2.5: 1: 9.5), formula 2 (HNO3: HNO3 Fumming: H2SO4 = 3: 1: 7,5) and the   formula 3 (HNO3: HNO3 Fumming: H2SO4 = 1: 1: 1,6). Result showed that dissolving pulp from Beema bamboo with third formula get the highest nitrogen content (12,97%). Fourier-transform infrared spectroscopy (FTIR)  analysis showed that all of the nitrocellulose have nitro group and with burning test also proved that nitrocellulose can be rapidly burdened. However, the solubility of  nitrocellulose in acetone and ethers-alcohols indicates that the distribution of nitrogen content in the nitration process is not meet the standard yet. Keywords: bamboo, nitrogen content, nitrocellulose, dissolving pulp, propellant

Filter by Year

1965 2022