cover
Contact Name
Hairani
Contact Email
matrik@universitasbumigora.ac.id
Phone
+6285933083240
Journal Mail Official
matrik@universitasbumigora.ac.id
Editorial Address
Jl. Ismail Marzuki-Cilinaya-Cakranegara-Mataram 83127
Location
Kota mataram,
Nusa tenggara barat
INDONESIA
MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer
Published by Universitas Bumigora
ISSN : 18584144     EISSN : 24769843     DOI : 10.30812/matrik
Core Subject : Science,
MATRIK adalah salah satu Jurnal Ilmiah yang terdapat di Universitas Bumigora Mataram (eks STMIK Bumigora Mataram) yang dikelola dibawah Lembaga Penelitian dan Pengabadian kepada Masyarakat (LPPM). Jurnal ini bertujuan untuk memberikan wadah atau sarana publikasi bagi para dosen, peneliti dan praktisi baik di lingkungan internal maupun eksternal Universitas Bumigora Mataram. Jurnal MATRIK terbit 2 (dua) kali dalam 1 tahun pada periode Genap (Mei) dan Ganjil (Nopember).
Articles 9 Documents
Search results for , issue "Vol 24 No 2 (2025)" : 9 Documents clear
Identify the Condition of Corn Plants Using Gray Level Co-occurrence Matrix and Bacpropagation A. Rahim, Abd Mizwar; Sasongko, Theopilus Bayu
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 24 No 2 (2025)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i2.4035

Abstract

This research aims to increase the accuracy of identifying the condition of corn plants based on leaf features using the GLCM and ANN Backpropagation methods. The GLCM method is used to extract features from corn leaf images, while Backpropagation ANN is used to classify the condition of corn plants based on these features. This classification was carried out using a dataset of corn leaves from four different conditions, namely healthy, leaf-spot, leaf-blight, and leaf-rust. Next, leaf features are extracted using the GLCM method. After that, data normalization was carried out, balancing the dataset, and training was carried out on the Backpropagation ANN model to classify the condition of the corn plants. After training the model, the next model evaluation is carried out using the confusion matrix method. The research results show that the method used can produce quite high accuracy when identifying the condition of corn plants, with an accuracy of 99%. This shows that the use of GLCM and ANN Backpropagation can be a good alternative in identifying the condition of corn plants. This research provides benefits in making it easier to accurately identify the condition of corn plants.
Determining Toddler’s Nutritional Status with Machine Learning Classification Analysis Approach Hidayat, Taufik; Ridwan, Mohammad; Iqbal, Muhamad Fajrul; Sukisno, Sukisno; Rizky, Robby; Manongga, William Eric
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 24 No 2 (2025)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i2.4092

Abstract

The nutritional status of toddlers is a common issue many countries face worldwide. Various facts indicate that malnutrition is a primary focus for many researchers. Several efforts have been made to address this problem, including developing analytical models for identification, classification, and prediction. This study aims to evaluate the nutritional status of children by utilizing a classification analysis approach using Machine Learning. This research aims to improve the accuracy of the classification system and facilitate better decision-making in stunted toddlers, which is a priority, especially in the health sector. The Machine Learning classification analysis process will later utilize the performance of the Naive Bayes algorithm, the Support Vector Machine algorithm, and the Multilayer Perceptron algorithm. ML performance can be optimized using gridsearchCV to produce optimal classification analysis patterns. The data set of this study uses 6812 toddler data sourced from the Health Center at the Tangerang Regency Health Office. Based on the research presented, Machine Learning performance in analyzing nutritional status classification provides maximum results. The results are reported based on a precision level with an accuracy of 88%. The results of this analysis can also present a classification of nutritional status based on knowledge. This study can contribute to and update the analysis model in determining nutritional status. The results of this study can also provide benefits in handling nutritional status problems that occur in children.
Analysis of Combination Machine Learning Classification with Feature Selection Technique for Lecturer Performance Analysis Model Srinadi, Ni Luh Putri; Antarajaya, I Nyoman Suraja; Widhyastuti, Luh Putu Wiwien; Hostiadi, Dandy Pramana; Rini, Erma Sulistyo; Chawaphan, Pharan
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 24 No 2 (2025)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i2.4356

Abstract

Machine learning-based classification techniques are widely utilized for accurate analysis in various fields. This study focuses on assessing lecturer performance in higher education to enhance teaching standards and produce high-quality learning outcomes. Previous studies have employed multiparameter approaches, such as statistical correlation analysis, but these methods fail to achieve optimal accuracy and precision due to limited alignment with data characteristics. This research proposes a lecturer performance measurement model by evaluating three machine learning algorithms: k-Nearest Neighbors (k-NN), Decision Tree, and Na¨pve Bayes. The model integrates three feature selection techniques to improve classification performance: ANOVA, Information Gain, and Chi-Square. The study aims to enhance classification accuracy and assess the impact of feature selection techniques on performance metrics. A significant contribution of this research is introducing a dynamic feature selection approach tailored to data characteristics, which improves classification model performance. The methodology comprises three main stages: data loading and measurement of relevant parameters; data preprocessing, including filtering, cleaning, transformation, normalization, and feature selection; and performance evaluation using a machine learning-based classification approach. Experimental results demonstrate that the Decision Tree algorithm combined with Chi-Square feature selection achieved an accuracy of 0.887, precision of 0.903, recall of 0.887, and F1-score of 0.884. The proposed modelprovides a reliable framework for evaluating lecturer performance and can be utilized to recognize and reward high-performing lecturers effectively.
Analyzing the Application of Optical Character Recognition: A Case Study in International Standard Book Number Detection Rozi, Imam Fahrur; Ananta, Ahmadi Yuli; Sintiya, Endah Septa; Amalia, Astrifidha Rahma; Ariyanto, Yuri; Nugraeni, Arin Kistia
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 24 No 2 (2025)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i2.4367

Abstract

In the era of advanced education, assessing lecturer performance is crucial to maintaining educational quality. One aspect of this assessment involves evaluating the textbooks authored by lecturers. This study addresses the problem of efficiently detecting International Standard Book Numbers (ISBNs) within these textbooks using optical character recognition (OCR) as a potential solution. The objective is to determine the effectiveness of OCR, specifically the Tesseract platform, in facilitating ISBN detection to support lecturer performance assessments. The research method involves automated data collection and ISBN detection using Tesseract OCR on various sections of textbooks, including covers, tables of contents, and identity pages, across different file formats (JPG and PDF) and orientations. The study evaluates OCR performance concerning image quality, rotation, and file type. Results of this study indicate that Tesseract performs effectively on high-quality, low-noise JPG images, achieving an F1 score of 0.97 for JPG and 0.99 for PDF files. However, its performance decreases with rotated images and certain PDF conditions, highlighting specific limitations of OCR in ISBN detection. These findings suggest that OCR can be a valuable tool in enhancing lecturer performance assessments through efficient ISBN detection in textbooks.
Combination Forward Chaining and Certainty Factor Methods for Selecting the Best Herbs to Support Independent Health Azwar, Muhamad; Winarni Sofya, Sri; Malika, Riwayati; Hairani, Hairani; Ximenes Guterres, Juvinal
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 24 No 2 (2025)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i2.4485

Abstract

The use of herbal medicine as an alternative treatment is increasingly popular due to its natural benefits and cultural significance. However, a lack of public knowledge about the effectiveness, appropriate dosages, and processing methods of herbal remedies poses a significant barrier to their proper utilization. This knowledge gap often leads to suboptimal or even unsafe usage of herbal medicines. To address this issue, this study proposes an application-based system combining the Forward Chaining and Certainty Factor methods to provide personalized recommendations for the best herbal remedies supporting self-health management. The research aims to enhance accessibility to reliable information on herbal treatments while ensuring accurate and user-specific recommendations. By utilizing the ForwardChaining and Certainty Factor method, this system identifies suitable herbal plants based on the type of disease, processing techniques, recommended dosages, and duration of treatment. Meanwhile, the Certainty Factor method calculates the level of certainty for each recommendation provided. The study’s results showed a validation rate of 90%, indicating that the combination of these two methods effectively bridges the gap between traditional herbal knowledge and modern health needs. This study concludes that the system offers a practical tool for individuals to select and use herbal treatments safely and effectively, promoting better health outcomes.
Comparison of Text Representation for Clustering Student Concept Maps Fatrisna Salsabila, Reni; Dwi Prasetya, Didik; Widyaningtyas, Triyanna; Hirashima, Tsukasa
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 24 No 2 (2025)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i2.4598

Abstract

This research aims to address the critical challenge of selecting a text representation method that effectively captures students’ conceptual understanding for clustering purposes. Traditional methods, such as Term Frequency-Inverse Document Frequency (TF-IDF), often fail to capture semantic relationships, limiting their effectiveness in clustering complex datasets. This study compares TF-IDF with the advanced Bidirectional Encoder Representations from Transformers (BERT) to determine their suitability in clustering student concept maps for two learning topics: Databases and Cyber Security. The method used applies two clustering algorithms: K-Means and its improved variant, K-Means++, which enhances centroid initialization for better stability and clustering quality. The datasets consist of concept maps from 27 students for each topic, including 1,206 concepts and 616 propositions for Databases, as well as 2,564 concepts and 1,282 propositions for Cyber Security. Evaluation is conducted using two metrics Davies-Bouldin Index (DBI) and Silhouette Score, to assess the compactness and separability of the clusters. The result of this study is that BERT consistently outperforms TF-IDF, producing lower DBI values and higher Silhouette Scores across all clusters (k= 2 - k=10). Combining BERT with K-Means++ yields the most compact and well-separated clusters, while TF-IDF results in overlapping and less-defined clusters. The research concludes that BERT is a superior text representation method for clustering, offering significant advantages in capturing semantic context and enabling educators to identify student misconceptions and improve learning strategies.
Revealing Interaction Patterns in Concept Map Construction Using Deep Learning and Machine Learning Models Laily, F.ti Ayyu Sayyidul; Prasetya, Didik Dwi; Handayani, Anik Nur; Hirashima, Tsukasa
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 24 No 2 (2025)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i2.4641

Abstract

Concept maps are educational tools for organizing and representing knowledge, enhancing comprehension, and memory retention. In concept map construction, much knowledge can be utilized. Still, concept map construction is complex, involving actions that reflect a user’s thinking and problemsolving strategies. Traditional methods struggle to analyze large datasets and capture temporal dependencies in these actions. To address this, the study applies deep learning and machine learning techniques. This research aims to evaluate and compare the performance of Long Short-Term Memory (LSTM), K-Nearest Neighbors (K-NN), and Random Forest algorithms in predicting user actions and uncovering user interaction patterns in concept map construction. This research method collects and analyzes interaction logs data from concept map activities, using these three models for evaluation and comparison. The results of this research are that LSTM achieved the highest accuracy (83.91%) due to its capacity to model temporal dependencies. Random Forest accuracy (80.53%), excelling in structured data scenarios. K-NN offered the fastest performance due to its simplicity, though its reliance on distance-based metrics limited accuracy (70.53%). In conclusion, these findings underscore the practical considerations in selecting models for concept map applications; LSTM demonstrates effectiveness in predicting user actions and excels for temporal tasks, while Random Forest and K-NN offer more efficient alternatives in computational.
The Mitigating Overfitting in Sentiment Analysis Insights from CNN-LSTM Hybrid Models Susandri, Susandri; Zamsuri, Ahmad; Nasution, Nurliana; Efendi, Yoyon; Alwan, Hiba Basim
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 24 No 2 (2025)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i2.4742

Abstract

This study aims to improve sentiment analysis accuracy and address overfitting challenges in deep learning models by developing a hybrid model based on Convolutional Neural Networks and Long Short-Term Memory Networks. The research methodology involved multiple stages, starting with preprocessing a dataset of 5,456 rows. This process included removing duplicate data, empty entries, and neutral sentiments, resulting in 2,685 usable rows. To overcome data quantity limitations, data augmentation expanded the training dataset from 2,148 to 10,740 samples. Data transformation was carried out using tokenization, padding, and embedding techniques, leveraging Word2Vec and GloVe to produce numerical representations of textual data. The hybrid model demonstrated strong performance, achieving a training accuracy of 99.51%, validation accuracy of 99.25%, and testing accuracy of 87.34%, with a loss value of 0.56. Evaluation metrics showed precision, recall, and F1-Score values of 86%, 87%, and 86%, respectively. The hybrid model outperformed individual models, including Convolutional Neural Networks (70% accuracy) and Long Short-Term Memory Networks (81% accuracy). It also surpassed other hybrid models, such as the multiscale Convolutional Neural Network-Long Short-Term Memory Network, which achieved a maximum accuracy of 89.25%. The implications of this study demonstrate that the hybrid model based on Convolutional Neural Networks and Long Short-Term Memory Networks effectively improves sentiment analysis accuracy while reducing the risk of overfitting, particularly in small or imbalanced datasets. Future research is recommended to enhance data quality, adopt more advanced embedding techniques, and optimize model configurations to achieve better performance.
Sentiment Study of ChatGPT on Twitter Data with Hybrid K-Means and LSTM Hanan, Dimas Afryzal; Husodo, Ario Yudo; Rassy, Regania Pasca
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 24 No 2 (2025)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i2.4791

Abstract

The rapid evolution of artificial intelligence (AI) has transformed the way people interact with technology, with ChatGPT emerging as a standout innovation in natural language processing (NLP). While it offers immense benefits, such as improving productivity and accessibility, it has also sparked debates about trust, transparency, and user experience. This makes understanding public sentiment about ChatGPT both timely and essential.This study explores user sentiments by combining K-Means clustering and Long Short-Term Memory (LSTM) models for analysis. The research utilized a dataset from Kaggle, which underwent extensive preprocessing, including text cleaning, tokenization, and lemmatization. Key features were extracted using TF-IDF and Word2Vec techniques, while clustering was refined with the Elbow Method and Silhouette Score. The data was grouped into three clusters focusing on ChatGPT’s functions, its developers, and user activities. Sentiment analysis using LSTM achieved an impressive accuracy of 98% after five training cycles. The findings highlight that negative sentiments, particularly around technical challenges and transparency, dominate user feedback, signaling areas for improvement. While positive sentiments exist, they remain overshadowed by critical perspectives. This study underscores the importance of enhancing user trust and experience while ensuring ethical and transparent AI development. The insights provided aim to guide developers and policymakers in creating AI technologies that are more user-focused and socially responsible. Future research should include multilingual and cross-platform data to paint a more comprehensive picture.

Page 1 of 1 | Total Record : 9