cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 6,301 Documents
Deep neural networks for removing clouds and nebulae from satellite images Glazyrina, Natalya; Muratkhan, Raikhan; Eslyamov, Serik; Murzabekova, Gulden; Aziyeva, Nurgul; Rysbekkyzy, Bakhytgul; Orynbayeva, Ainur; Baktiyarova, Nazira
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5390-5399

Abstract

This research paper delves into contemporary methodologies for eradicating clouds and nebulae from space images utilizing advanced deep learning technologies such as conditional generative adversarial networks (conditional GAN), cyclic generative adversarial networks (CycleGAN), and space-attention generative adversarial networks (space-attention GAN). Cloud cover presents a significant obstacle in remote sensing, impeding accurate data analysis across various domains including environmental monitoring and natural resource management. The proposed techniques offer novel solutions by leveraging spatial attention mechanisms to identify and subsequently eliminate clouds from images, thus uncovering previously concealed information and enhancing the quality of space data. The study emphasizes the necessity for further research aimed at refining cloud removal algorithms to accommodate diverse detection conditions and enhancing the overall efficiency of deep learning in satellite image processing. By highlighting potential benefits and advocating for ongoing exploration, the paper underscores the importance of advancing cloud removal techniques to improve data quality and unlock new applications in Earth remote sensing. In conclusion, the proposed approaches hold promise in addressing the persistent challenge of cloud cover in space imagery, paving the way for more accurate data analysis and future advancements in remote sensing technologies.
Revolutionizing malaria diagnosis: deep learning-powered detection of parasite-infected red blood cells Hoque, Md. Jiabul; Islam, Md. Saiful; Khaliluzzaman, Md.; Muntasir, Abdullah Al; Mohsin, Mohammad Abdullah Bin
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp4518-4530

Abstract

Malaria is a significant global health issue, responsible for the highest rates of morbidity and mortality globally. This paper introduces a very effective and precise convolutional neural network (CNN) method that employs advanced deep learning techniques to automate the detection of malaria in images of red blood cells (RBC). Furthermore, we present an emerging and efficient deep learning method for differentiating between cells infected with malaria and those that are not infected. To thoroughly evaluate the efficiency of our approach, we do a meticulous assessment that involves comparing different deep learning models, such as ResNet-50, MobileNet-v2, and Inception-v3, within the domain of malaria detection. Additionally, we conduct a thorough comparison of our proposed approach with current automated methods for malaria identification. An examination of the most current techniques reveals differences in performance metrics, such as accuracy, specificity, sensitivity, and F1 score, for diagnosing malaria. Moreover, compared to existing models for malaria detection, our method is the most successful, achieving an accurate score of 1.00 in all statistical matrices, confirming its promise as a highly efficient tool for automating malaria detection.
Convolutional neural network for assisting accuracy of personalized clavicle bone implant designs Mayasari, Dita Ayu; Hawari, Ihtifazhuddin; Dwiyanti, Sheba Atma; Noviyadi, Nathasya Reinelda; Andryani, Dinda Syaqila; Utomo, Muhammad Satrio; Hikmah, Nada Fitrieyatul; Asmaria, Talitha
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3208-3219

Abstract

The clavicle is a long bone that tends to be frequently fractured in the midshaft region. The plate and screw fixing method is mainly applied to address this issue. This study aims to construct a clavicle bone implant design with a consideration to achieve a high accuracy and high-quality surface between the plate and the clavicle surface. The computational tomography scanning (CT-scan) image series data were processed using a convolutional neural network (CNN) to classify the clavicle image. The CNN outcomes were gathered as three-dimensional (3D) volume data of clavicle bone. This 3D model was then proposed for the plate design. The CNN testing results of 97.4% for the image clavicle bones classification, whereas the prints of the 3D model from clavicle bone and its plate and screw design reveal compatibility between the bone surface and the plate surface. Overall, the CNN application to the series of CT images could ease the classification of clavicle bone images that would precisely construct the 3D model of clavicle bone and its suitable clavicle bone plate design. This study could contribute as a guideline for other bone plate areas that need to fit the patient’s bone geometry.
The potential of virtual representations to help students in learning mathematics Sari, Yurizka Melia; Arlinwibowo, Janu; Fatima, Gupita Nadindra; Purwoko, Dwi; Suprapto, Suprapto
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6411-6422

Abstract

The study aims to conclude the benefits of virtual representation in helping students learn mathematics. To answer this goal, this research utilizes the meta-analysis method of two-group difference design. The data collection process used inclusion criteria. The data collection process was carried out with the PRISMA. The results of the effect analysis of the p-value < 5% (95% confidence interval) and the total effect of 1.1761 so that virtual representation has a significant influence. The analysis showed that i) implementation in each continent showed identical positive effects, ii) the number of students subjected to the treatment did not make a difference, iii) themes in mathematics were equally well affected with the help of virtual representation, iv) the effect of virtual representation in junior high school, high school, and university was identical, v) the development of competencies in attitude, knowledge, and skills was equally good, vi) among the many applications, GeoGebra was the application that had the greatest impact in helping students understand mathematics subject matter, and vii) the use of smartphones had a greater effect than other devices such as computers and calculators. To produce the maximum effect in understanding students, it is recommended to use mobile devices and GeoGebra software.
Pyrolysis process control: temperature control design and application for optimum process operation Muharto, Bambang; Saputro, Frendy Rian; Prabowo, Wargiantoro; Anggoro, Trisno; Adiprabowo, Arya Bhaskara; Masfuri, Imron; Irawan, Bagus Bhakti
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1473-1485

Abstract

Fast pyrolysis in auger reactor gains attention for efficient bio-oil production. Due to the quick nature of the process, precise temperature control using the proportional-integral-derivative (PID) algorithm is paramount. This study harnesses various PID tuning approaches through modelling and experimental validation to optimize continuous and precise pyrolysis temperature. System identification was done to investigate the process dynamic with fit accuracy above 93% and design a suitable PID control. Comparison with the experiment data shows a favorable result with rise time and settling time match above 75%. Ziegler-Nichols (ZN) and Cohen-Coon (CC) tuning methods were implemented in the system with undistinguished results, yielding steady-state error (SSE) below 1% and settling time around 4,300 to 4,800 seconds. The heuristic fine-tuning method improved the rise time and settling time by stabilizing before 3,600 seconds. Furthermore, the robustness of PID controllers was verified with a disturbance rejection test, keeping the SSE deviation inside the boundary of 2%. Finally, the setup could support maximum pyrolytic oil production by 69.6% at 500 °C. The result implies that the PID controller could provide a stable and rugged response to support a productive and sustainable pyrolysis plant operation.
Forecasting creditworthiness in credit scoring using machine learning methods Mukhanova, Ayagoz; Baitemirov, Madiyar; Amirov, Azamat; Tassuov, Bolat; Makhatova, Valentina; Kaipova, Assemgul; Makhazhanova, Ulzhan; Ospanova, Tleugaisha
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5534-5542

Abstract

This article provides an overview of modern machine learning methods in the context of their active use in credit scoring, with particular attention to the following algorithms: light gradient boosting machine (LGBM) classifier, logistic regression (LR), linear discriminant analysis (LDA), decision tree (DT) classifier, gradient boosting classifier and extreme gradient boosting (XGB) classifier. Each of the methods mentioned is subject to careful analysis to evaluate their applicability and effectiveness in predicting credit risk. The article examines the advantages and limitations of each method, identifying their impact on the accuracy and reliability of borrower creditworthiness assessments. Current trends in machine learning and credit scoring are also covered, warning of challenges and discussing prospects. The analysis highlights the significant contributions of methods such as LGBM classifier, LR, LDA, DT classifier, gradient boosting classifier and XGB classifier to the development of modern credit scoring practices, highlighting their potential for improving the accuracy and reliability of borrower creditworthiness forecasts in the financial services industry. Additionally, the article discusses the importance of careful selection of machine learning models and the need to continually update methodology in light of the rapidly changing nature of the financial market.
Content based COVID-19 image retrieval system using local histogram equalization and deep convolutional neural network Shetty, Rani; S. Bhat, Vandana; Pujari, Jagadeesh; Shetty, Rashmi
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp3942-3950

Abstract

Doctors play a critical role in interpreting medical images as part of their core responsibilities. They need to find comparable examples that can assist in making informed decisions, especially when encountering ambiguous visuals. Traditionally, Systems such as content-based medical image retrieval (CBMIR) have been used for this. The proposed method employs a novel technique, local histogram equalization (LHE) for preprocessing, transfer learning-based convolutional neural network to extract the representative features with Manhattan and Euclidean distance metrics to assess how similar the query image and database image are to one another. This model is trained on a standard dataset namely Chest X-Ray images. Top-k, Precision and Recall measure is employed to assess system performance. From the results, the suggested enhanced convolutional neural network (CNN) model demonstrates significantly superior performance in the top 10 retrieval rates of 97.13% for coronavirus disease 2019 (COVID-19), 96.84% for normal, 82.63% for pneumonia-bacterial, and 81.72% for pneumonia-viral and precision@recall10 of 93.14% for COVID-19, 91.88% for normal, 77.84% for pneumonia-bacterial and 74.71% for pneumonia-viral.
Cryptocurrency fraud detection through classification techniques Tripathy, Nrusingha; Kumar Balabantaray, Sidhanta; Parida, Surabi; Nayak, Subrat Kumar
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp2918-2926

Abstract

Ethereum and its native cryptocurrency, Ether, have played a worthy attention in the development of the blockchain and cryptocurrency space. Its programmability and smart contract capabilities have made it a foundational platform for decentralized applications and innovations across various industries. Because of its anonymous and decentralized structure, the hotheaded expansion of cryptocurrencies in the payment space has created both enormous potential and concerns related to cybercrime, including money laundering, financing terrorism, illegal and dangerous services. As more financial institutions attempt to integrate cryptocurrencies into their networks, there is an increasing need to create a more transparent network that can withstand these kinds of attacks. In this work, we are using different classification techniques, such as logistic regression (LR), random forest (RF), k-nearest neighbors (KNN), adaptive boosting (AdaBoost), and extreme gradient boosting (XGBoost) for Ethereum fraud detection. The dataset we are using includes rows of legitimate transactions done using the cryptocurrency Ethereum as well as known fraudulent transactions. The “XGBoost” model, which is noteworthy, detects variations that might attract notice and prevent potential issues in this chore.
Systematic review: State-of-the-art in sensor-based abnormality respiration classification approaches Razman, Nur Fatin Shazwani Nor; Nasir, Haslinah Mohd; Zainuddin, Suraya; Brahin, Noor Mohd Ariff; Ibrahim, Idnin Pasya; Mispan, Mohd Syafiq
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6929-6943

Abstract

Respiration-related disease refers to a wide range of conditions, including influenza, pneumonia, asthma, sudden infant death syndrome (SIDS) and the latest outbreak, coronavirus disease 2019 (COVID-19), and many other respiration issues. However, real-time monitoring for the detection of respiratory disorders is currently lacking and needs to be improved. Real-time respiratory measures are necessary since unsupervised treatment of respiratory problems is the main contributor to the rising death rate. Thus, this paper reviewed the classification of the respiratory signal using two different approaches for real-time monitoring applications. This research explores machine learning and deep learning approaches to forecasting respiration conditions. Every consumption of these approaches has been discussed and reviewed. In addition, the current study is reviewed to identify critical directions for developing respiration real-time applications.
Prediction of the risk of developing heart disease using logistic regression Salau, Ayodeji Olalekan; Assegie, Tsehay Admassu; Markus, Elisha Didam; Eneh, Joy Nnenna; Ozue, ThankGod Izuchukwu
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1809-1815

Abstract

Heart disease (HD) accounts for more deaths every year than other illnesses. World Health Organization (WHO) assessed 17.9 million life losses caused by heart disease in 2016, demonstrating 31% of all international life losses. Three-quarters of these life losses occur in low and middle-income nations. Machine learning (ML), due to advanced precision in pattern recognition and classification, demonstrates to be in effect in complementing decision-making and threat prediction from the huge number of HD data created by the healthcare sector. Thus, this study aims to develop a logistic regression model (LRM) for predicting the risk of getting HD in ten years. The study explores the different methodologies for improving the performance of base LRM for predicting whether a person gets HD after ten years or not. The result demonstrates the capability of LRM in predicting the risks of getting HD after ten years. The LRM achieves 97.35% accuracy with the recursive feature elimination and random under-sampling. This implies that the LRM can play an important role in precautionary methods to avoid the risk of HD.

Filter by Year

2011 2026


Filter By Issues
All Issue Vol 16, No 1: February 2026 Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue