cover
Contact Name
Ika Kartika
Contact Email
metalurgi@brin.go.id
Phone
-
Journal Mail Official
metalurgi@brin.go.id
Editorial Address
Gedung Manajemen Puspiptek Gedung 720, Jl. Puspitek, Muncul, Kec. Setu, Kota Tangerang Selatan, Banten 15314, Tangerang Selatan, Provinsi Banten, 15314 Alamat Penerbit : Gedung BJ Habibie, JI. M.H. Thamrin NO. 8, Kb. Sirih, Kec. Menteng, Jakarta Pusat, Provinsi DKI Jakarta, 10340, Tangerang Selatan, Provinsi Banten
Location
Kota tangerang selatan,
Banten
INDONESIA
Metalurgi
Published by BRIN Publishing
ISSN : 01263188     EISSN : 24433926     DOI : 10.55981/metalurgi
The objective of this journal is the online media for disseminating results in Research and Development and also as a media for a scientist and researcher in the field of Metallurgy and Materials. The scope if this journal related on: Advanced materials and Nanotechnology Materials and Mineral characterization and Analysis Metallurgy process: extractive Ceramic and composite Corrosion and its technological protection Mineral resources manifestation Modelling and simulation in materials and metallurgy Engineering Metallurgy instrument
Articles 7 Documents
Search results for , issue "Vol 38, No 3 (2023): Metalurgi Vol. 38 No. 3 2023" : 7 Documents clear
The Effect of AlTi5B1 and ALTAB Ti80 with a Combination of AlSr15 and Mg Additions on Strength and Ductility of A356 Aluminum Alloys Mostavan, Afghany; Setiawan, Asep Ridwan; Basuki, Arif; Ardy, Husaini
Metalurgi Vol 38, No 3 (2023): Metalurgi Vol. 38 No. 3 2023
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/metalurgi.2023.714

Abstract

The current study aims to analyze microstructural changes affecting the A356 aluminum alloy, a hypoeutectic Al-Si-Mg alloy. This aluminum alloy is well-known for its strength, resistance to corrosion, lightweight, and heat treatability. The main objective of this research is to improve the strength and ductility of A356 alloys by using a synergistic strategy that includes AlTi5B1 and ALTAB Ti80 for microstructural alteration in combination with AlSr15 and Mg. The experimental results show that including all constituents in the as-cast condition enhances the ultimate tensile strength and elongation. Furthermore, in the heat-treated state, the addition of ALTAB Ti80 effectively maintains tensile strength (σuts=233.7 MPa), yield strength (σy=180.3 MPa), and elongation (e=5.8%). Additionally, when combined with Mg, the tensile strength and yield strength exhibit further improvement (σuts=253 MPa and σy=215.7 MPa); however, elongation is significantly reduced (e=2.7%)
Metalurgi Vol. 38 No. 3 2023 Andriyah, Lia
Metalurgi Vol 38, No 3 (2023): Metalurgi Vol. 38 No. 3 2023
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Residual Stress Measurement of Used Mining Dump Truck Frame for Remanufacturing Purposes Ferdiyanto, David; Sofyan, Nofrijon; Yuwono, Akhmad Herman; Dhaneswara, Donanta
Metalurgi Vol 38, No 3 (2023): Metalurgi Vol. 38 No. 3 2023
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/metalurgi.2023.730

Abstract

Remanufacturing the main frame of a mining dump truck can save cost, energy, and materials in heavy equipment industries. It also can reduce CO2 emissions for environmental preservation to achieve sustainability. However, since the mainframe received a dynamic load during operation, it presumably leaves accumulated residual stresses in the frame. The residual stress, particularly tensile residual stress, stands out as a primary contributing factor to the initiation of cracks, which may ultimately result in failures. In this paper, the residual stress of the used mining dump truck main frame was identified by modeling simulation using FEA (finite element analysis) and actual measurement using a portable x-ray residual stress analyzer with the cos α method. The results showed that the weld area subjected to dynamic loads exhibited the highest tensile residual stress, reaching approximately +772 MPa. This specific region emerges as a critical area demanding attention during the remanufacturing process. The application of PWHT (post-weld heat treatment) at 400 °C for 1 hour effectively reduced residual stress on the weld joint, predominantly tensile residual stress, by more than 80%.  
Metalurgi Vol. 38 No. 3 2023 Andriyah, Lia
Metalurgi Vol 38, No 3 (2023): Metalurgi Vol. 38 No. 3 2023
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Effect of pH and Sodium Silicate Dosage on the Separation of Magnesium and Lithium from Artificial Brine Water Using Chemical Precipitation Techniques Lalasari, Latifa Hanum; Sulistiyono, Eko; Harjanto, Sri; Irawan, Januar; Firdiyono, Florentinus; Arini, Tri; Andriyah, Lia; Suharyanto, Ariyo; Natasha, Nadia Chrisayu; Yunita, Fariza Eka
Metalurgi Vol 38, No 3 (2023): Metalurgi Vol. 38 No. 3 2023
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/metalurgi.2023.728

Abstract

This study aims to report the findings of an investigation into the separation of lithium and magnesium ions in the artificial brine water. The artificial brine water contains concentrations of magnesium, calcium, and lithium cations that closely resemble the concentrations seen in natural brine water sourced from Gunung Panjang using magnesium chloride, calcium chloride, and lithium chloride p.a. The objective of this experiment was to investigate the impact of pH and the addition of sodium silicate on the separation of magnesium and calcium ions from lithium ions in artificial brine water. The best outcomes were achieved when the pH of the brine water was set at 10, and sodium silicate was added in a stoichiometric ratio of 219%. These parameters led to a lithium content of 90.06%, magnesium removal of  70.32%, and a Mg/Li ratio of 6.29, indicating a substantial presence of magnesium ions precipitated as solids with pyroxene (MgSiO3) phase. This research also succeeded in increasing the lithium content by 94.28% and reducing the Mg/Li ratio to 4.96 after the precipitated solids were subjected to a water-leaching process.
Kinetic of Dissolution of Nickel Limonite Calcine by Sulfuric Acid Solution Setiawan, Iwan; Nabilah, Annisa; Oediyani, Soesaptri; Subagja, Rudi; Irawan, Januar; Sampoerno, Arief Budi; Yunita, Fariza Eka; Suharyanto, Ariyo; Syahid, Adi Noer
Metalurgi Vol 38, No 3 (2023): Metalurgi Vol. 38 No. 3 2023
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/metalurgi.2023.740

Abstract

Currently, more than 60% of nickel processing is carried out using nickel sulfide as a raw material. Nonetheless, due to the depletion reserves of nickel sulphide, nickel laterite has drawn a lot of interest to be processed as raw material. Nickel laterite in Indonesia is generally found in low grades, with nickel concentration of <1.15%. One method of treating nickel limonite is leaching in a sulfuric acid solution. This study aims to determine the reaction rate in the leaching process of calcine nickel limonite and the effect of sulfuric acid concentration and leaching temperature on the percent nickel extraction. In this research, the limonite ore from Pomalaa, Southeast Sulawesi, Indonesia, which has undergone a reduction process, was used as raw material. This research was conducted by leaching method on nickel limonite calcine using sulfuric acid reagent with 0.2, 0.5, and 1 M concentration variation, temperature variations of 60, 70, and 90°C, stirring speed 500 rpm, and %S/L (w/w) 10%. In this leaching research, the activation energy obtained at a sulfuric acid concentration of 0.2, 0.5, and 1 M are 13,7379 kJ/mol, 19,7582 kJ/mol, 20,3161 kJ/mol, respectively. The leaching process of nickel limonite calcine was controlled by diffusion. The optimum nickel extraction percentage in this study was 97.45%, obtained at a concentration of 1 M sulfuric acid, temperature of 70 °C, and leaching time of 240 minutes.
Comparative Studies Simulation Software for Bone Plate Compression Mayasari, Dita; Muhammad, Sirojuddin Kholil; Triwardono, Joko; Malau, Daniel Panghihutan; Utomo, Muhammad Satrio; Asmaria, Talitha
Metalurgi Vol 38, No 3 (2023): Metalurgi Vol. 38 No. 3 2023
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/metalurgi.2023.738

Abstract

Medical applications occasionally require PSI (patient-specific implant) designs to match the implant bone’s geometry. To verify and predict failures of the design as well as a treatment before the manufacturing process, FEA (finite element analysis) is employed to simulate when given a specific number of loads. Plenty of studies have done the FEA using a couple of types of software; however, to the best of our knowledge, there is no literature to compare those several FEA results with a comparable experiment. This study further analyzes material stress, particularly to compute the VMS (Von Misses stress) of the Ti6Al4V bone plate. Furthermore, this study proposes to examine and deliver a comprehensive understanding using the four most used software of COMSOL, Ansys, Abaqus, and Autodesk Inventor. The results of those four simulations are then compared with the stress test through the Hardness Vickers test. This study will contribute significantly as a novel comparison between VMS and hardness test as a stress prediction in an implant material.  

Page 1 of 1 | Total Record : 7


Filter by Year

2023 2023


Filter By Issues
All Issue Vol 39, No 2 (2024): Metalurgi Vol. 39 No. 2 2024 Vol 39, No 1 (2024): Metalurgi Vol. 39 No. 1 2024 Vol 38, No 3 (2023): Metalurgi Vol. 38 No. 3 2023 Vol 38, No 2 (2023): Metalurgi Vol. 38 No. 2 2023 Vol 38, No 1 (2023): Metalurgi Vol. 38 No. 1 2023 Vol 37, No 3 (2022): Metalurgi Vol. 37 No. 3 Desember 2022 Vol 37, No 2 (2022): Metalurgi Vol. 37 No. 2 Agustus 2022 Vol 37, No 1 (2022): Metalurgi Vol. 37 No. 1 April 2022 Vol 36, No 3 (2021): Metalurgi Vol. 36 No. 3 Desember 2021 Vol 36, No 2 (2021): Metalurgi Vol. 36 No. 2 Agustus 2021 Vol 36, No 1 (2021): Metalurgi Vol. 36 No. 1 April 2021 Vol 35, No 3 (2020): Metalurgi Vol. 35 No. 3 Desember2020 Vol 35, No 2 (2020): Metalurgi Vol. 35 No. 2 Agustus 2020 Vol 35, No 1 (2020): Metalurgi Vol. 35 No. 1 April 2020 Vol 34, No 3 (2019): Metalurgi Vol. 34 No. 3 Desember 2019 Vol 34, No 2 (2019): Metalurgi Vol. 34 No. 2 Agustus 2019 Vol 34, No 1 (2019): Metalurgi Vol. 34 No. 1 April 2019 Vol 33, No 3 (2018): Metalurgi Vol. 33 No. 3 Desember 2018 Vol 33, No 2 (2018): Metalurgi Vol. 33 No. 2 Agustus 2018 Vol 33, No 1 (2018): Metalurgi Vol. 33 No. 1 April 2018 Vol 32, No 3 (2017): Metalurgi Vol. 32 No. 3 Desember 2017 Vol 32, No 2 (2017): Metalurgi Vol. 32 No. 2 Agustus 2017 Vol 32, No 1 (2017): Metalurgi Vol. 32 No. 1 April 2017 Vol 31, No 3 (2016): Metalurgi Vol. 31 No. 3 Desember 2016 Vol 31, No 2 (2016): Metalurgi Vol. 31 No. 2 Agustus 2016 Vol 31, No 1 (2016): Metalurgi Vol. 31 No. 1 April 2016 Vol 30, No 3 (2015): Metalurgi Vol. 30 No. 3 Desember 2015 Vol 30, No 2 (2015): Metalurgi Vol.30 No.2 Agustus 2015 Vol 30, No 1 (2015): Metalurgi Vol.30 No.1 APRIL 2015 Vol 29, No 3 (2014): Metalurgi Vol.29 NO.3 Desember 2014 Vol 29, No 2 (2014): Metalurgi Vol.29 No.2 Agustus 2014 Vol 29, No 1 (2014): Metalurgi Vol.29 No.1 April 2014 Vol 28, No 3 (2013): Metalurgi Vol.28 No.3 Desember 2013 Vol 28, No 2 (2013): Metalurgi Vol.28 No.2 Agustus 2013 Vol 28, No 1 (2013): Metalurgi Vol.28 No.1 April 2013 Vol 27, No 3 (2012): Metalurgi Vol.27 No.3 Desember 2012 Vol 27, No 2 (2012): Metalurgi Vol. 27 No. 2 Agustus 2012 Vol 27, No 1 (2012): Metalurgi Vol. 27 No. 1 April 2012 Vol 26, No 3 (2011): Metalurgi Vol. 26 No. 3 Desember 2011 Vol 26, No 2 (2011): Metalurgi Vol.26 No.2 Agustus 2011 Vol 26, No 1 (2011): Metalurgi Vol. 26 No. 1 April 2011 More Issue