Jurnal Teknokes
Aims JURNAL TEKNOKES aims to become a forum for publicizing ideas and thoughts on health science and engineering in the form of research and review articles from academics, analysts, practitioners, and those interested in providing literature on biomedical engineering in all aspects. Scope: 1. Medical Electronics Technology and Biomedical Engineering: Biomedical Signal Processing and Control, Artificial intelligence in biomedical imaging, Machine learning, and Pattern Recognition in a biomedical signal, Medical Diagnostic Instrumentation, Laboratorium Instrumentation, Medical Calibrator Design, Intelligent Systems, Neural Networks, Machine Learning, Fuzzy Systems, Digital Signal Processing, Image Processing, prosthetics, orthotics, rehabilitation sciences, Mobility Assistive Technology (MAT), Internet of Things (IoT), and Artificial Intelligence (AI) in the prosthetics and orthotics field, Breast Imaging, Cardiovascular Imaging, Chest Radiology, Computed Tomography, Diagnostic Imaging, Gastrointestinal Imaging, Genitourinary, Radiology, Head & Neck, Imaging Sciences, Magnetic Resonance Imaging, Musculoskeletal Radiology, Neuroimaging and Head & Neck, Neuro-Radiology, Nuclear Medicine, Pediatric Imaging, Positron Emission Tomography, Radiation Oncology, Ultrasound, X-ray Radiography, etc. 2. Medical Laboratory Technology: Hematology and clinical chemistry departments, microbiology section of the laboratory, parasitology, bacteriology, virology, hematology, clinical chemistry, toxicology, food and beverage chemistry. 3. Environmental Health Science, Engineering and Technology: Papers focus on design, development of engineering methods, management, governmental policies, and societal impacts of wastewater collection and treatment; the fate and transport of contaminants on watersheds, in surface waters, in groundwater, in soil, and in the atmosphere; environmental biology, microbiology, chemistry, fluid mechanics, and physical processes that control natural concentrations and dispersion of wastes in air, water, and soil; nonpoint-source pollution on watersheds, in streams, in groundwater, in lakes, and in estuaries and coastal areas; treatment, management, and control of hazardous wastes; control and monitoring of air pollution and acid deposition; airshed management; and design and management of solid waste facilities, detection of micropollutants, nanoparticles and microplastic, antimicrobial resistance, greenhouse gas mitigation technologies, novel disinfection methods, zero or minimal liquid discharge technologies, biofuel production, advanced water analytics 4. Health Information System and Technology The journal presents and discusses hot subjects including but not limited to patient safety, patient empowerment, disease surveillance and management, e-health and issues concerning data security, privacy, reliability and management, data mining and knowledge exchange as well as health prevention. The journal also addresses the medical, financial, social, educational, and safety aspects of health technologies as well as health technology assessment and management, including issues such as security, efficacy, the cost in comparison to the benefit, as well as social, legal, and ethical implications. This journal also discussed Intelligent Biomedical Informatics, Computer-aided medical decision support systems using a heuristic, Educational computer-based programs pertaining to medical informatics.
Articles
9 Documents
Search results for
, issue
"Vol. 16 No. 4 (2023): December"
:
9 Documents
clear
Monitoring SpO2, BPM, and Temperature on Smartband with Data Sending Using IoT Android Display
Mahardika, Melva;
Irianto, Bambang Guruh;
Wisana, I Dewa Gede Hari;
Triwiyanto, Triwiyanto;
Rathod, Yagnik
Jurnal Teknokes Vol. 16 No. 4 (2023): December
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
No matter if a patient is receiving care at home or in a hospital, monitoring them is an essential part of healthcare.Currently, many hospitals use a manual method to measure body temperature, oxygen saturation, and heart rate, necessitating physical visits from nurses to patients' rooms to get data. This approach, however, turns out to be less effective and time-consuming. This research aims to develop a wearable device placed on a patient's wrist is the main goal of this project. Body temperature, oxygen saturation, and heart rate are the three vital sign metrics that this gadget will be able to continuouslymonitor in real-time. Additionally, Ubidots integration will enable the device to deliver notifications based on the data gathered.The contribution of this research is the development of IoT-based wearable devices for remote monitoring, which aims to improve the quality of health service monitoring. The tool is expected to facilitate remote monitoring for medical personnel and patient families. This research method uses MAX30100 as digital sensors to monitor heart rate, oxygen saturation and MLX90614 as a sensor to detect body temperature. The results of this research can display data on the Ubidots application and send notifications to email. The results showed that the SpO2 sensor had the lowest error rate of 0.2% and the highest mistake rate of 1.6%. The error rates displayed by the BPM sensor varied, with the lowest being 0.6% and the largest being 5.68%. For body temperature measurements, the minimum error rate recorded is 0.002%, while the maximum error rate is 0.016%. This research shows that it is time to develop further into a sophisticated health monitoring tool to improve the quality of health services.
Monitoring SpO2, Heart Rate, and Body Temperature on Smartband with Data Sending Use IoT Displayed on Android
Anggraini, Navira;
Irianto, Bambang Guruh;
Wisana, I Dewa Gede Hari;
Triwiyanto, Triwiyanto;
Kumbhare, Ashish
Jurnal Teknokes Vol. 16 No. 4 (2023): December
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
The patient's health must not deteriorate if treatment is not started right away if they show indications of a disease. Monitoring is the most important thing that needs to be done to ascertain the patient's state, especially for those with lung illness who have asthma and pneumonia with moderate symptoms. SpO2, BPM, and body temperature are vital signs that can be used as indicators of a person's degree of health. The main goal of this project was to create wearable devices index finger then a wrist-worn devices that can measure SpO2, Heart rate, and body temperature in real time, regardless of distance, and alert users' smartphones when a patient's condition is abnormal. The body temperature is measured using the MLX90614 sensor, positioned on the wrist, whereas the Oxygen saturation and Heart rate are measured with MAX30100 sensor, placed on the index finger. The ESP32 Microcontroller processes the sensor data after which the results are displayed on the TFT Display GC9A01 and to Ubidots application on a smartphone or computer. When the SpO2, BPM, and Temperature values drop below the predetermined range, Ubidots sends an alert message to the associated email address on the smartphone or computer. In comparison to BPM, which had the lowest error is 0.06% and highest at 5.65%, and temperature, which had the least error value of 0.1% and the most 0.88%, SpO2 had the lowest error is 0.2% and biggest error at 1.6%. MAX30100 sensor, which serves as a processor for SpO2 and Heart rate values on the index finger, delivers a good response when utilized by respondents, according to the smart band's manufacturer. The results of data measurement can also be shown on LCD TFTGC9A01 and Ubidots applications. This device will be kept in a hospital, clinic, or utilized on its own at home. Additionally, regardless of the distance, this application is anticipated to assist families or medical personnel in keeping track of the health of senior patients.
The Implementation of Life Saving Facilities at RSUD Surabaya East Java Province in 2023
Nurmayanti, Demes;
Nadziroh, Umi;
Kriswandana, Ferry;
Setiawan, Setiawan
Jurnal Teknokes Vol. 16 No. 4 (2023): December
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
The implementation of life-saving facilities is crucial to be considered in a hospital in order to minimize adverse events during emergency conditions. This study aims to describe the implementation of life-saving facilities at RSUD Suraabaya, East Java Province. The research utilizes a descriptive method with data collection through observation and measurement. The research subject is located at RSUD Surabaya, East Java Province, with the K3RS organization as the respondent. The variables examined include the identification of potential fire hazards and life-saving facilities such as emergency stairs, emergency doors, emergency lights, exit routes, exit signs, and assembly points. Data analysis is conducted descriptively. The research findings indicate that the identification of potential fire hazards in both the New and Old Buildings under normal conditions is in accordance with the applicable Standard Operating Procedures (SOP). Emergency stairs and emergency doors fall under the category of being sufficient, emergency lights fall under the category of being insufficient, while the exit routes, exit signs, and assembly points fall under the category of being good. Overall, theassessment of life-saving facilities falls under the category of being sufficient. Therefore, it is recommended that RSUD Surabaya, East Java Province, conducts monitoring regarding the compliance with SOP, carries out improvements, and procures life-saving facilities that do not meet the requirements. In future research, improvements need to be made by adding other variables. This is necessary in order to correct deficiencies in this research.
IoT-Based Human Vital Sign Monitoring Tool Using Telegram Notifications
K, Rizky Dwi;
Tetraputra, M. Prastawa Assalim;
Kholiq, Abdul
Jurnal Teknokes Vol. 16 No. 4 (2023): December
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
Vital signs play a crucial role in monitoring the progress of adult or pediatric patients during hospitalization, as they enable prompt detection of delayed recovery or adverse events. Vital signs are measured to obtain fundamental indicators of the patient's health status. The measurement of vital signs, including blood pressure, temperature, pulse, and respiratory rate, is the most common intervention in hospital medicine. Advanced monitoring systems combine clinical and technological aspects to deliver innovative healthcare outcomes. Remote patient monitoring systems are increasingly becoming the cornerstone of healthcare delivery, replacing traditional manual recording with computer and smartphone-based electronic recording as a versatile and innovative health monitoring system. This study aims to design a Vital Sign Monitoring Parameter BPM and RR tool with Notifications via the IoT-Based Telegram application. The tool enables the monitoring of vital signs, particularly BPM and RR, regardless of the patient's location and at any given time. This allows doctors, health workers, and patients to stay informed about their health condition. Real-time display of vital sign data is available through the TFT LCD screen, and the data from the screen can be accessed via Telegram. The Telegram application will send notifications in the event of abnormal patient conditions. MAX30100, a digital sensor for detecting breathing rate and heart rate, is utilized in this research. Furthermore, the data obtained shows errors that are within the allowable limits for each parameter. The difference between the heart rate readings and the respiratory rate values on the device and the patient monitor is 1.14% for heart rate and 0.84% for respiratory rate. This study indicates that it is time to monitor vital signs that can be seen remotely and have a system that is an inexpensive and easy-to-operate device for health workers without interfering with activities of daily living.
Digital Sphygmomanometer Detects Systole Diastolic Display
Aulia, Farahun Nisa;
Pudji, Andjar;
Sumber, Sumber;
Ullah, Naqeeb
Jurnal Teknokes Vol. 16 No. 4 (2023): December
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
Hypertension. characterized by elevated blood pressure against artery walls. can be influenced by a patient's body temperature. Therefore. detecting body temperature before measuring blood pressure is essential for accurate assessment. Currently. Digital Tension and Body Temperature parameters are typically evaluated separately. To address this. we propose a novel approach to combine these parameters into a single unit. enhancing health monitoring. Utilizing MPX5050GP for blood pressure and MLX90614 for body temperature detection. Both sensors are directly connected to the Arduino UNO microcontroller. enabling seamless data processing and display on the Nextion LCD. Experimental results demonstrate the device's effectiveness. with systolic blood pressure measurements showing a Maximum error: 2.23%. minimum error: 0.53% for systolic measurements. Diastolic measurements have with a remarkable maximum error of only 4.69% and a minimal error of 1.79%. Additionally. the body temperature measurements exhibited a Achieved exceptional precision with errors as low as 0.45% and a maximum of 1.65%. Successfully completed. this design facilitates simultaneous measurement of two vital parameters. Its potential to streamline health monitoring could significantly impact hypertension management and other related conditions. Further validation and implementation in clinical settings are anticipated to enhance its utility and benefits.
Candida Albicans CT Value in Asthmatics with Prolonged Corticosteroid Inhaler Uses
Cholidah, Ema Zahiroh Nur;
Sasongkowati, Retno;
Rahayuningsih, Christ Kartika;
Suliati, Suliati
Jurnal Teknokes Vol. 16 No. 4 (2023): December
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
Corticosteroid inhaler is one of the first-line drugs given for the control and prevention of asthma attacks in the long term and continuously. The use of corticosteroid inhalers for a long time has systemic side effects in the oral cavity which can be a predisposing factor for normal fungal infection of Candida albicans microflora, an increase of Candida albicans’s amount in the oral cavity can cause oral candidiasis. Candida albicans detection using q-PCR to detect specific genes in oral swab specimens can provide an indirect picture of the amount of Candida albicans in the samples taken. The purpose of this study was to determine the relationship between the length of use of corticosteroid inhalers and the cycle threshold value in oral swab samples of asthma patient. This type of research is correlational research with data collection techniques using a purposive sampling technique on 30 respondents at the Lung Polyclinic at Bhayangkara Hospital H.S Samsoeri Mertojoso Surabaya who fit the inclusion criteria. Samples were examined using q-PCR to detect specific genes in the ITS-2 region to detect Candida albicans. This research was conducted at the Molecular Biology Laboratory of theMinistry of Health Surabaya Polytechnic during the period April – May 2023. The results showed that there were 26 samples(86.7%) positive for the ITS-2 gene and 4 samples (13.3%) negative for the ITS-2 gene. with sig. 0.307 so that it can be concluded that there is no relationship between the length of use of corticosteroid inhalers and the cycle threshold value of C. albicans in asthmatic’s oral swab sample.
Comparison of Pressure Sensor in Flow Analyzer Design for Peep Measurement on Ventilators
Wakidi, Levana Forra;
Amrinsani, Farid;
Zeha, Alfi Nur;
Dewiningrum, Riqqah;
Nyatte, Steyve
Jurnal Teknokes Vol. 16 No. 4 (2023): December
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
Flow Analyzer allows measurement of flow, pressure, volume, and oxygen concentration delivered to the patient, with PEEP (Positive End Expiratory Pressure) being a crucial parameter in mechanical ventilation. Incorrect PEEP values can elevate the risk of patient mortality. The recommended PEEP range is 5-24 cmH2O, and administration is determined by the patient's clinical condition. This research aims to identify stable and highly accurate pressure sensors by comparing the MPX2010DP and MPX5010DP sensors with pressure readings from a Digital Pressure Meter (DPM). The study involves 5 repetitions of a lung test, each with 11 pressure reading points, within a pressure measurement range of 0-30 cmH2O. The DPM has a resolution of 1 cmH2O, while both pressure sensors have a resolution of 0.01 cmH2O. Results indicated that the MPX2010DP sensor has the smallest error percentage, specifically 0.00%, at a pressure increase of 5 cmH2O and 20 cmH2O. Conversely, the MPX2010DP sensor shows the largest error percentage, 5.16%, when the pressure decreases by 5 cmH2O. The highest standard deviation of 0.52 is observed in the MPX5010DP sensor at a 20 cmH2O pressure increase, while the maximum correction value of 0.54 is found in the MPX5010DP sensor at a 25 cmH2O pressure increase. According to the ANOVA test, there is no significant difference in pressure produced between the MPX2010DP sensor, MPX5010DP sensor, and DPM. The sensors are well-calibrated and provide accurate readings according to calibration tool standards. Therefore, the MPX2010DP and MPX5010DP sensors are deemed accurate for measuring PEEP parameters in ventilators. Based on the obtained data, it can be concluded that the MPX2010DP sensor is more accurate and stable.
Design Analysis of Portable 1 Channel Infusion Device Analyzer Using Sensor SKU 237545
Syaifudin, Syaifudin;
Rahmawati, Triana
Jurnal Teknokes Vol. 16 No. 4 (2023): December
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
An infusion pump is a tool used to inject a certain amount of fluid into the patient's body through the patient's veins continuously over a certain period of time. A syringe pump is a tool that functions to push the syringe rod so that it can produce a flow ranging from microliters to milliliters per minute periodically with high accuracy. Very often there are problems with blockages or occlusion when using infusion pumps and syringe pumps. The occlusion limit set is ≤20 PSI according to ECRI. The presence of occlusion in the infusion pump and syringe pump can be identified when there is an alarm buzzer which will sound when a blockage is detected. A 1 Channel Portable Infusion Device Analyzer has been designed using the SKU 237545 Sensor, namely by using a 1 channel flowrate and occlusion sensor and making it portable to be efficient. For this reason, it is necessary to analyze the performance of the tools that have been created. How accurate is it? From the results of performance testing, Oclusion was corrected at 0.242 psi and 0.3 Psi. For flow rate, the largest correction was 2.4 ml/hour and the uncertainty was 6,046 ml/hour. This shows that the accuracy of the design is still quite high and the resulting tool is still not stable, this can be seen from the uncertainty value. The uncertainty that occurs is likely due to the sensitivity of the droplet sensor related to the detection time of the droplet
Digital Filter Design to Reduce Motion Artifacts in Electrocardiogram Signals Based on IIR Filter
Maghfiroh, Anita Miftahul;
Setiawan, Singgih Yudha;
Mujahid, Muhammad Umer Farooq
Jurnal Teknokes Vol. 16 No. 4 (2023): December
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
Developed a new method to overcome motion artifacts in Electrocardiogram (ECG) signals, which often interfere with accurate clinical analysis. Motion artifacts, such as body movements, can cause significant distortions in the ECG signal, resulting in incorrect interpretation and affecting medical diagnosis. The main objective of this research is to design and implement an infinite impulse response (IIR) filter with a predetermined sequence, namely orders 2, 4, 6, and 8 to reduce motion artifacts in the ECG signal. We aim to improve ECG signal quality by preserving important ECG signal information and reducing noise caused by motion artifacts. This research contributes to developing more precise and reliable ECG signal processing techniques. The proposed method provides an effective approach to handling motion artifacts, enabling more accurate and reliable ECG interpretation by medical professionals. We used an ECG simulator that provides body movement simulation as a basis for experiments. The detected ECG signal is processed with a predetermined order IIR filter. We compare the filtered signal to the original signal to measure the effectiveness of reducing motion artifacts. Experimental results show that the applied IIR filter efficiently reduces motion artifacts in the ECG signal. The SNR assessment showed a significant improvement, proving the success of this method in maintaining ECG signal quality. The result is that in the 2nd order, the SNR value is 22.25 dB, in the 4th order the SNR value is 22.75 dB, in the 6th order the SNR value is 22.99 dB, in the 6th order the SNR value is 22.99 dB. 8 obtained an SNR value of 23dB. This study successfully demonstrated that using IIR filters in a specified order effectively reduces motion artifacts in the ECG signal, increases SNR, and maintains the integrity of clinical information in the ECG signal. The implications of this research extend to medical technology development and clinical applications, providing a strong foundation for continued research in more efficient and reliable ECG signal processing.