cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Bahan Alam Terbarukan
ISSN : 23030623     EISSN : 24072370     DOI : -
Core Subject : Science,
This journal presents articles and information on research, development and applications in biomass conversion processes (thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion) and equipment to produce fuels, power, heat, and value-added chemicals from biomass. A biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstock. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol (see also alcohol fuel). The high-value products increase profitability, the high-volume fuel helps meet energy needs, and the power production helps to lower energy costs and reduce greenhouse gas emissions from traditional power plant facilities. Future biorefineries may play a major role in producing chemicals and materials that are traditionally produced from petroleum.
Arjuna Subject : -
Articles 426 Documents
THE SYNTHESIS OF GLYCEROL CARBONATE FROM BIODIESEL BYPRODUCT GLYCEROL AND UREA OVER AMBERLYST 36 Senania, Astri; Sulistyo, Hary; Prasetya, Agus
Jurnal Bahan Alam Terbarukan Vol 6, No 1 (2017): June 2017 [Nationally Accredited]
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v6i1.7691

Abstract

The increasing use of biodiesel as renewable fuels leads to the increasing of glycerol amount as a byproduct of biodiesel production. One of the glycerol derivative products that is environmentally friendly and renewable is glycerol carbonate. Glycerol carbonate is commonly used as a raw material for polymers, surfactants, emulsifiers, lubricants, paints, also used in the cosmetics and pharmaceutical industries. In this study, the research was carried out by using a batch reactor with a three-neck flask equipped with reverse cooling, thermometers, mercury stirrer, and heating mantle with the conditions of the reaction temperature around 373 – 413 K, mole ratio of reactants of urea: glycerol were 1:0,5, 1:1, 1:1,5, 1:2 and 1:4  and the concentration of catalyst were 1%, 2%, 3%, 4% and 5% respectively. Reaction was done for four hours. The results showed that the formation of glycerol carbonate from glycerol and urea using a catalyst Amberlyst 36 is affected by the catalyst concentration, reaction temperature and the ratio of reactants used. The highest glycerol conversion was obtained at 55.07% at a temperature of 393 K with mole ratio of urea and glycerol 1:0,5 and the percentage of catalyst 3% of the amount of glycerol.
KULTIVASI SPIRULINA PLATENSIS PADA MEDIA BERNUTRISI LIMBAH CAIR TAHU DAN SINTETIK Syaichurrozi, Iqbal; Jayanudin, Jayanudin
Jurnal Bahan Alam Terbarukan Vol 5, No 2 (2016): December 2016 [Nationally Accredited]
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v5i2.7398

Abstract

This research was conducted to study the effect of various additions of synthetic nutrient into Spirulina platensis growth medium containing tofu wastewater 8%v/v. Synthetic nutrient was varied at 50, 75, 100%. Based on abservation, the OD680 (Optical Density at 680 nm) increased until in the end of cultivation time with final OD680 of 0.381, 0.392, 0.189 for variable of 50, 75, 100% respectively. Meanwhile, the growth rate value was 0.0743, 0.0759, 0.0354/day. The best protein content was obtained at nutrient synthetic of 75%, which was 91,27%. The good growth and protein content of S. platensis obtained at nutrient synthetic of 75%, which had C:N:P ratio of 128:12:1.
BIOFUEL PRODUCTION FROM PALM OLEIN BY CATALYTIC CRACKING PROCESS USING ZSM-5 CATALYST Tambun, Rondang; Gusti, Oktris Novali; Nasution, Muhammad Anshori; Saptawaldi, Rangga Pramana
Jurnal Bahan Alam Terbarukan Vol 6, No 1 (2017): June 2017 [Nationally Accredited]
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v6i1.8733

Abstract

The depletion of fossil energy reserves raises the potential in the development of renewable fuels from vegetable oils. Indonesia is the largest palm oil producer in the world, where palm oil can be converted into biofuels such as biogasoline, kerosene and biodiesel. These biofuels are environmentally friendly and free of the content of nitrogen and sulfur through catalytic cracking process. In this research, palm olein is used as feedstock using catalytic cracking process. ZSM-5 is used as a catalyst, which has a surface area of 425 m2/g and Si/Al ratio of 50. Variables varied are the operating temperature of 375 oC - 450 °C and reaction time of 60 minutes - 150 minutes. The result shows that the highest yield of liquid product is 84.82%. This yield is obtained at a temperature of 400 °C and reaction time of 120 minutes. The yield of the liquid product in the operating conditions consisting of C6-C12 amounted to 19.47 %, C14-C16 amounted to 16.56 % and the C18-C28 amounted to 48.80 %.
THE KINETICS BOTH OF GROWTH AND METABOLITE PRODUCTION OF X.CAMPESTRIS USING OF 4% LIQUID SUGAR SUBSTRATE FROM CASSAVA HYDROLISATE Djenar, Nancy Siti; Mulyono, Edi Wahyu Sri
Jurnal Bahan Alam Terbarukan Vol 6, No 1 (2017): June 2017 [Nationally Accredited]
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v6i1.7950

Abstract

X. campestris is aerobic bacteria producing extracellular biopolymers (EPS, extracellular polysaccharide) known as xanthan gum. To determine the technology and the process conditions appropriate to the formation of this product, therefore the understanding of both the kinetics of growth and metabolite production of bacteria is needed. In this research, to assess the growth of X. campestris using the method of calculation of dry cell weight. For determining the kinetics of production of metabolite used substrates of 4% liquid sugar  from cassava starch hydrolysate. From this research was showed that X. campestris maximum growth in NB medium obtained in about 58thhour, at the growth rate of about 0.04 g / hour, stationary phase obtained at the 60th hour with a maximum dry cell weight of 2.7688 g/L and specific growth rate (μ) of X. campestris amounted to 0.043 hour-1. Based on the kinetic curves both on growth and its metabolite production, X.campestris has non-growth associated product pattern. In this case the production of  xanthan gum  occured after cell growth stopped then  its product is a secondary metabolite with highest amount  of 3.73 g / L at 102nd hour, ie the 4th day of fermentation. Overall of this research indicated that  Nutrient Broth (NB) may be used for the growth of X. campestris. But based on the value of μ above, the rate of cell reproduction was still low. Liquid sugar can be used as a substrate to produce xanthan gum. However to increase its productivity, there should be an addition of other carbon or energy and nitrogen sources.
THE PRODUCTION OF BREADFRUIT FLOUR: EFFECT OF HEATER TEMPERATURE TO THE DRYING RATE AND TIME OF THE BREADFRUIT Sari, Denni Kartika; Lestari, Retno Sulistyo Dhamar
Jurnal Bahan Alam Terbarukan Vol 6, No 1 (2017): June 2017 [Nationally Accredited]
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v6i1.7168

Abstract

The composition of mineral and vitamin from breadfruit is particularly known of having benefits compared to rice which is a main source of carbohydrate consumed by societies. The process of drying is one of the factors that affects foodstuffs quality. The aim of this research was to provide an understanding of drying phenomena from data experiment and discover the influence of drying air temperature to breadfruit drying time and rates. This research was conducted in several stages which are material preparation (breadfruit) by through downsizing process, then weigh the material (breadfruit) once every 5 minutes on each drying air  temperature variations (50 ºC, 60 oC, 70 oC, and 80 oC). The research were conducted using breadfruit with the best drying time which is obtained at 60 0C for 100 minutes. The lowest water content obtained was 0.4%, while the highest drying rate was 0.00144 Kg2/m2.s at 80 ºC of temperature.
SINTESIS BIOADITIF GASOLINE MELALUI KETALISASI GLISEROL MENGGUNAKAN KATALISATOR PADAT Nuryoto, Nuryoto; Sulistyo, Hary; Sediawan, Wahyudi Budi; Perdana, Indra
Jurnal Bahan Alam Terbarukan Vol 5, No 2 (2016): December 2016 [Nationally Accredited]
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v5i2.7431

Abstract

Utilization of glycerol side product from biodiesel as waste management application is required for reduced   negative effect which possible emerged. Glycerol  have three bond of hydroxyde, so its  opportunity  to utilize  to be solketal as bio-additive of gasoline. Indion 225 Na ion exchanger resin is strong acid cation category and low  prices, so  its potency to use alternatively of solid catalyst to get efficient and economic process. The purpose of this research was focussed to search  of the best condition by optimalization indion 225 Na performance as catalyst in glycerol ketalization reaction, by integrated of variables that have effected to reaction for maximize glycerol coversion. To get maximize of reactants molecular interaction and for  optimalization indion 255 Na performance, observation  conducted  in the  range variables which widely enough that were  reactant ratio of 5:1-6:1 mole of acetone mole/mole of glycerol, diameter size  catalyst of  20-40 mesh, catalyst concentration of 3-5% mass of acetone, and reaction temperature of 35-65oC. Result of the research showed that  indion 225 Na catalyst have good performance, by glycerol conversion to reach of 51.89%. Glycerol conversion mentioned was obtained at reactant ratio of 6:1 mole of acetone/mole of gycerol, diameter size catalyst of  40 mesh, catalyst concentration of 4%  mass of acetone, and  reaction temperature of  65oC.
ETHANOL PRODUCTION FROM FERMENTATION OF ARUM MANIS MANGO SEEDS (MANGIFERA INDICA L.) USING Saccharomyces Crevisiaea Masturi, Masturi; cristina, amelia; Istiana, Nurul; Sunarno, Sunarno; Dwijananti, Pratiwi
Jurnal Bahan Alam Terbarukan Vol 6, No 1 (2017): June 2017 [Nationally Accredited]
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v6i1.8139

Abstract

The increase of energy needs coupled with the decline in fossil fuel production, requires other sources of energy to meet those needs. One of the solution is using renewable energy. Bioethanol is one of the alternatives to the fossil fuel. This study was aimed at determining the exact mass of mango seeds in producing high grade bioethanol. Bioethanol was produced by fermentation of arum manis mango fruit seed using bakers yeast, Sacczharomyces cerevisiae.  The arum manis mango seeds were known to contain carbohydrate contents of 19.53%. The study was conducted by using different mass of mango seeds 25, 35 and 45 g resectively. The study showed that the samples of 25, 35 and 45 g produce ethanol with concentration of 4.78, 6.64 and 1.48%. These results indicated that the mass of 35 g mango seeds produced highest ethanol content.
THE SYNTHESIS OF CHITOSAN POLYMER MEMBRANE/PVA AS AN ECO-FRIENDLY BATTERY FOR ALTERNATIVE ENERGY RESOURCE Widiarti, Nuni; Sumarni, Woro; Setyaningrum, Lysa
Jurnal Bahan Alam Terbarukan Vol 6, No 1 (2017): June 2017 [Nationally Accredited]
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v6i1.6880

Abstract

The eco-friendly materials which have not commonly developed as energy storage alternative sources are solid electrolytes. Chitosan is one of the natural polymer potentially used as the material of solid electrolytes. The purpose of this study is to determine the conductivity value of chitosan polymer’s electrolytes-PVA-glutaraldehyde-NH4Br by varying amount of chitosan and ammonium bromide salt (NH4Br). The polymer electrolyte membrane was made using phase inversion method. Electrolyte polymer is made by mixing chitosan, PVA, glutaraldehyde, and NH4Br to become homogenous liquid and then printed it in petri dish. Polymer electrolyte with chitosan variation of 2; 2.4; 2.8 and 3.2 g has highest ionic conductivity of 1.4983 x 10-2 S/cm with the addition of 2.8 g that can be used as the optimum composition. The variations of salt (NH4Br) were 0; 0.2; 0.4; 0.6; 0.8 and 1 g has the highest ionic conductivity in the point of 2.4385 x 10-2 S/cm with the addition of 0.6 g. The characterization result of FTIR shows OH group at the wavenumber of 3362.02  cm-1, C-O group at 1740.43 cm-1, and C=N group at 1542.41 cm-1. Synthesized polymer can be used as a battery that has 0.43 V voltage.
PENGARUH LAJU ALIR UDARA DAN WAKTU PROSES GASIFIKASI TERHADAP GAS PRODUCER LIMBAH TANGKAI DAUN TEMBAKAU MENGGUNAKAN GASIFIER TIPE DOWNDRAFT Suhendi, Endang; Paradise, Gilang Umar; Priandana, Idham
Jurnal Bahan Alam Terbarukan Vol 5, No 2 (2016): December 2016 [Nationally Accredited]
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v5i2.6054

Abstract

The continued development of industry and agriculture along with unutilized of industrial and agricultural wastes properly, the waste will only be garbage which can be an interference to environment. Is required to have waste treatment technologies that are effective, efficient and environmentally friendly to utilize the waste into renewable energy sources. The way of handling this waste is to use gasification technology. Gasification is a method of thermochemical conversion of solid fuels into the syngas gas fuel in the gasifier container by supplying a gasification agent such as steam, air and others. The purpose of this research is to determine the effect of air flow rate and the time of gasification process for tobacco leaf stalk’s waste againts to the composition and the components of syngas. This research is conducted using a gasifier with a capacity of ± 2.5 kg. The research procedures are drying, crushing, sizing, gasification process, and analysis of gas compositions. The result of this research has proven that tobacco leaf stalk’s waste has potential to be renewable energy sources which can produce syngas using gasification process. The concentration of syngas (CO, H2 and CH4) which is the highest obtained at variation of Q = 3 m3 / h in minutes 30 with syngas concentration of 2.27% vol CH4, CO gas amounted to 7.17% vol and H2 gas amounted to 5.79 % vol.
EXTRACTION OF PHENOLIC COMPOUNDS FROM PETAI LEAVES (PARKIA SPECIOSA HASSK.) USING MICROWAVE AND ULTRASOUND ASSISTED METHODS Buanasari, Buanasari; Eden, Willy Tirza; Sholichah, Ayu Ina
Jurnal Bahan Alam Terbarukan Vol 6, No 1 (2017): June 2017 [Nationally Accredited]
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v6i1.7793

Abstract

The antioxidant has an activity to neutralize free radical compound that the body needs to avoid damage cells and tissues. Phenolic is one of the compounds that have an antioxidant activity. The influences of ultrasonic-assisted extraction (UAE) and microwave-assisted extraction (MAE) conditions on phenolic compounds of Parkia speciosa Hassk. leaves were investigated. The effects of temperature (40°C, 50°C, 60°C and 70°C), time (10, 30 and 50 minutes) and material-solvent ratio (1:10, 1:13, 1:15 ) were evaluated based on the yield, total phenolic content (TPC) and antioxidant activity. The result showed that the highest yield (15.82%) was obtained at 1:15 (w/w) of material-solvent ratio, 50°C of temperature and 50 minutes of extraction time for MAE. The highest yield of UAE is 15.53% that sample was obtained at 1:13 (w/w) of material-solvent ratio, 60°C of optimal temperature and 30 minutes extraction time. The highest IC50 of UAE method extract was 52.55 ppm, while the extract obtained using MAE method was 50.44 ppm. UAE is more stable at higher temperatures. Time and solvent which was used more efficient than MAE. Extract of petai leaves (Parkia speciosa Hassk.) were very potential to be used as a source of natural antioxidants because they have IC50 values from 41.39 to 66.00 ppm. Its antioxidants capacity is ranged from strong to very strong capacity.

Page 6 of 43 | Total Record : 426


Filter by Year

2012 2024


Filter By Issues
All Issue Vol 13, No 1 (2024): June 2024 [Nationally Accredited Sinta 2] Vol 12, No 2 (2023): December 2023 [Nationally Accredited Sinta 2] Vol 12, No 1 (2023): June 2023 [Nationally Accredited - Sinta 2] Vol 11, No 2 (2022): December 2022 [Nationally Accredited - Sinta 2] Vol 11, No 1 (2022): June 2022 [Nationally Accredited - SINTA 2] Vol 10, No 2 (2021): December 2021 [Nationally Accredited - Sinta 2] Vol 10, No 1 (2021): June 2021 [Nationally Accredited - SINTA 2] Vol 9, No 2 (2020): December 2020 [Nationally Accredited - Sinta 2] Vol 9, No 1 (2020): June 2020 [Nationally Accredited - Sinta 2] Vol 8, No 2 (2019): December 2019 [Nationally Accredited - Sinta 2] Vol 8, No 1 (2019): June 2019 [Nationally Accredited - Sinta 2] Vol 7, No 2 (2018): December 2018 [Nationally Accredited] Vol 7, No 1 (2018): June 2018 [Nationally Accredited] Vol 6, No 2 (2017): December 2017 [Nationally Accredited] Vol 6, No 1 (2017): June 2017 [Nationally Accredited] Vol 6, No 1 (2017): June 2017 [Nationally Accredited] Vol 5, No 2 (2016): December 2016 [Nationally Accredited] Vol 5, No 2 (2016): December 2016 [Nationally Accredited] Vol 5, No 1 (2016): June 2016 [Nationally Accredited] Vol 5, No 1 (2016): June 2016 [Nationally Accredited] Vol 4, No 2 (2015): December 2015 Vol 4, No 2 (2015): December 2015 Vol 4, No 1 (2015): June 2015 Vol 4, No 1 (2015): June 2015 Vol 3, No 2 (2014): December 2014 Vol 3, No 2 (2014): December 2014 Vol 3, No 1 (2014): June 2014 Vol 3, No 1 (2014): June 2014 Vol 2, No 2 (2013): December 2013 Vol 2, No 2 (2013): December 2013 Vol 2, No 1 (2013): June 2013 Vol 2, No 1 (2013): June 2013 Vol 1, No 2 (2012): December 2012 Vol 1, No 2 (2012): December 2012 Vol 1, No 1 (2012): June 2012 Vol 1, No 1 (2012): June 2012 More Issue