cover
Contact Name
Muhamad Maulana Azimatun Nur
Contact Email
lanaazim@upnyk.ac.id
Phone
-
Journal Mail Official
editor.eksergi@gmail.com
Editorial Address
Prodi Teknik Kimia UPN Veteran Yogyakarta"</span>. Jl. SWK. 104 Lingkar Utara Condong Catur- Yogyakarta (55283)
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Eksergi: Chemical Engineering Journal
ISSN : 1410394X     EISSN : 24608203     DOI : https://doi.org/10.31315
Eksergi is an open-access, peer-reviewed scientific journal that focuses on research and innovation in the fields of energy and renewable energy. The journal aims to provide a platform for scientists, researchers, engineers, and practitioners to share knowledge and advancements that contribute to sustainable development and energy transition. In addition to energy topics, the journal also accepts high-quality manuscripts related to, but not limited to, the following areas: Separation processes Bioprocesses related to food, energy, and environmental applications Wastewater treatment and resource recovery Process optimization and intensification Carbon capture, utilization, and storage (CCUS) Chemical reaction engineering and reactor design Life cycle assessment (LCA) and sustainability evaluation Process Design and Control Engineering Process Simulations Process System Engineering The journal welcomes original research articles, reviews, and short communications that demonstrate novelty, scientific rigor, and relevance to chemical engineering and interdisciplinary applications.
Articles 301 Documents
Kajian Isoterm Adsorpsi Linear Alkilbenzena Sulfonate (LAS) dalam Limbah Cair Detergen Menggunakan Biosorben Ampas Kopi dan Ampas Kelapa Mimin Septiani; Zakiyah Darajat; Muhammad Arham Yunus; Maria Assumpta Nogo Ole; Zuhrotul Fikri Ilma
Eksergi Vol 20, No 2 (2023)
Publisher : Prodi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v20i2.9955

Abstract

One of the efforts to minimize the impact of detergent waste pollution is by adsorption using coffee dregs and coconut dregs adsorbents. The purpose of this study was to determine the optimum mass of coffee grounds and coconut pulp as adsorbents, to compare the effectiveness of their absorption in decreasing levels of Linear Alkyl Benzene Sulfonate, and to study their adsorption isotherm models. This research was conducted in batches with variations in the mass of each adsorbent, namely 1 gram, 2 grams, 3 grams, 4 grams and 5 grams. This research was conducted in batches with variations in the mass of each adsorbent, namely 1 gram, 2 grams, 3 grams, 4 grams and 5 grams. The detergent waste samples were contacted with the adsorbent for 30 minutes and then the absorption capacity was tested using the Methylene Blue test method. The results showed that the optimum absorption of LAS content from coffee grounds and coconut pulp adsorbents occurred at a mass of 2 grams with the greatest increase in absorption efficiency index Coconut dregs adsorbent is more effective than coffee dregs because it can absorb up to 37%, while coffee dregs are only 10% with the same adsorbent mass of 5 grams. The adsorption isotherm model of the 2 types of adsorbents refers to the Langmuir equilibrium with R2 values for coffee grounds 0.8651 and coconut pulp 0.9868.
Evaluasi Nilai Difusifitas Pelarut dan Konstanta Kecepatan Ekstraksi pada Isolasi Piperin Lada Hitam Mega Mustikaningrum; Desty Arista; Retno Dwi Nyamiati; Dodi Eko Nanda
Eksergi Vol 20, No 2 (2023)
Publisher : Prodi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v20i2.8996

Abstract

Piperine is a type of bioactive compound that can be isolated from black pepper. Currently the utilization of piperine is dominated by the health sector. In this study, piperine was isolated using the Soxhlet method. The purpose of this research is to propose a mathematical model to determine the value of the diffusivity (DA) of piperine, the extraction rate constant (k) and the piperine isolation equilibrium constant for commercial designs. Based on the results obtained the value of DA was obtained at 0.1878 m2/minute, the value of k was obtained at 0.0012 m/minute and the value of K was obtained at 0.900. Extraction was carried out using 96% ethanol solvent with a ratio of 25:1 to black pepper samples using the soxhletation method of 5 circulations. The resulting piperine extract was 55.46 mol/liter
Edible Oil sebagai Pelarut Ekstraksi Karotenoid dari Kulit Labu Kuning (Cucurbita moschata) Perwitasari Perwitasari; Heni Anggorowati; Susanti Rina Nugraheni; Indriana Lestari
Eksergi Vol 20, No 2 (2023)
Publisher : Prodi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v20i2.10003

Abstract

Carotenoids are pigments found in various types of fruits and vegetables that provide yellow, orange, and red colors. This study aimed to extract yellow pumpkin skin using edible oil solvents. The extraction process was carried out using ultrasound-assisted extraction (UAE) method with virgin coconut oil (VCO) and palm kernel oil (PKO). Yellow pumpkin peel powder with sizes of 40 mesh and 100 mesh were extracted with variations in extraction time (30 minutes, 60 minutes, and 90 minutes) and variations in solid-to-solvent ratio (1:10, 1:20, 1:30, 1:40, and 1:50). UV-Vis spectrophotometer analysis was used to determine the concentration of the extraction results. According to the research results, the best carotenoid concentration of 2513.44 ppm was obtained using PKO solvent with a powder size of 100 mesh, extraction time of 30 minutes, and powder-to-solvent ratio of 1:10.
Efek Penambahan Bahan Aditif Non-Alami terhadap Perilaku Lempung Plastisitas Tinggi yang Distabilisasi dengan Semen Soewignjo Agus Nugroho; Bambang Wisaksono; Heru Suharyadi
Eksergi Vol 20, No 2 (2023)
Publisher : Prodi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v20i2.9517

Abstract

Cement is proven increasing the strength of soft clays. Monmorillonite has a high shrinkage. Another hand, Kaolin has a small shrinkage. Waste material usage for stabilization agent was widely carried out this decade. BAFA (bottom ash fly ash) and POFA (palm oil fuel ash) are rich in Silica and Alumina, so they used to substitute of cement. The study examined the effect of Monmorillonite, Kaolin, BAFA and POFA on stabilization of clay with cement. Bentonite from 4% to 16% (is equated to BAFA and POFA, in ratio of 2:1) and Kaolin by 2.5%, used to reduce clay shrinkage, mixed with cement by 3% and 5%. Soil behavior will be reviewed from laboratory tests on curing-noncuring and soaked-unsoaked conditions. The results show changes in Atterberg Limits and Hydraulic Conductivity (permeability, k). Cement as well as BAFA and POFA reduce Plastic Limit greater than Liquid Limit. So, Plasticity Index decreased. It’s can be seen that cement and ash waste decreasing the permeability value. More Ash and less cement, make more impermeable soil. Addition of 3% and 5% cement increased the UCS values from 14.32 kPa to 81.20 kPa and 589.68 kPa and CBR value from 0.78% to 4.20% and 589.68 42.12% respectively
Pemanfaatan Sludge Ash Pond PT. Cirebon Electrical Power (CEP) sebagai Bahan Bakar Alternatif Agik Dwika Putra; Ilham Satria Raditya Putra; Rochim Bakti Cahyono
Eksergi Vol 20, No 2 (2023)
Publisher : Prodi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v20i2.9845

Abstract

As one of the power plants that uses coal as an energy source, PT Cirebon Electric Power (PT CEP) is committed to addressing waste problems with the 3R principle. Sludge ash ponds which is waste of the process production has the potential for alternative fuel. This study aims to evaluate the utilization of sludge ash ponds with the main target parameter in the form of calorific value. Based on proximate analysis, sludge pond ash only had a low heating value, around 210 kcal/kg, thus unbeneficial to be used as fuel directly. In order to make efficient utilization, a pyrolysis process was carried out to increase the existing heating value and was obtained at 700 – 870 kcal/kg. Generally, the standard of alternative fuel had minimum heating value of 4500 kcal/kg, therefore the blending process was carried out based on the fuel availability in the industrial site. The results of blending using coal showed that the high heating value of mixed briquette product was achieved at elevated more coal content used. By paying attention to the standard heating value, the ratio composition of ash pond to coal, 20/80 satisfy for utilization, where the heating value was around 4600 kcal/kg. The blending proses using pyrolysis char of ash pond showed un significant effect on the increasing of heating value, for example in a 40/60 ratio, the difference between the two types materials was only 210 kcal/kg. Therefore, pyrolysis pretreatment of sludge ash pond had unsignificant impact compared to the energy expended to run the process
Metode Modifikasi Membran Polietersulfon (PES) Untuk Meningkatkan Antifouling−Mini Review Modifikasi Membran Enny Nurmalasari; Hasnah Ulia; Apsari Puspita Aini; Agung Kurnia Yahya; Yunita Fahni
Eksergi Vol 20, No 2 (2023)
Publisher : Prodi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v20i2.9596

Abstract

Polyethersulfone (PES) is the most common material in various medical and water treatment applications because of its excellent mechanical and thermal properties. The hydrophobicity of polyethersulfone is considered as one of the main drawbacks because the hydrophobic surface causes a high biofouling effect on the membrane, so it has limitations in using Polietersulfon PES membrane technology. Modification of PES membranes is an important topic to be continuously developed to improve the properties of PES membranes. Membrane modifications focus on increasing the hydrophilicity, selectivity, and stability of membranes that are expected to be used commercially. Modifications were made to change the hydrophobic membrane surface into a hydrophilic membrane with good mechanical properties by introducing hydrophilic properties and functional groups to the polyethersulfone membrane surface. This review includes reviews and discussions on modifying PES membranes by mixing, coating, and grafting methods. In particular, adding functional groups to polyethersulfone is a suitable method for introducing hydrophilic properties. The addition of nanomaterials to the surface of the polyethersulfone membrane by mixing, coating, grafting, and combinations significantly increases the surface of the membrane, and all modifications affect the surface roughness of the membrane.
Pemanfaatan Karbon Aktif Kulit Pisang Kepok dan Karbon Aktif Tempurung Nipah sebagai Biosorben untuk Pengolahan Limbah Cair Laundry Ilma Fadlilah; Ayu Pramita; Nurlinda Ayu Triwuri; Heni Anggorowati
Eksergi Vol 20, No 2 (2023)
Publisher : Prodi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v20i2.9681

Abstract

The use of kepok banana peel activated carbon (AC-KPK) and nipa shell activated carbon (AC-TN) to adsorb phosphate ions in laundry waste has been successfully carried out. Characterization of activated carbon was carried out with SEM-EDX. The results of the morphological analysis showed that the pore sizes in AC-KPK and AC-TN were included in the macropore category. The elemental content of the AC-KPK adsorbent is C 74.9%; 23.6% O and 1.5% K, whereas in the AC-TN adsorbent it was observed that C elements were 70.7%; O 25.5%; K 2.0% and other elements such as Ca, Na, Mg and Cl are contained in small quantities. The optimum contact time needed by AC-KPK to adsorb phosphate ions in laundry wastewater is 15 minutes with an adsorption efficiency of 98.83%, the AC-TN adsorbent is 5 minutes with an adsorption efficiency of 99.52%, and the combination of AC-KPK&AC- TN resulted in a contact time of 5 minutes with an adsorption efficiency of 99.91%. The adsorption kinetics of phosphate ions with the three adsorbent media followed the pseudo second order model with adsorption rates for the adsorbents AC-KPK, AC-TN, and the combination AC-KPK & AC-TN respectively 3.9400 g/mg.min; -28.7119 g/mg.minute; and -10.8895 g/mg.min.
Pengaruh Suhu dan Waktu Pengeringan Pada Bioplastik dari Pati Jagung Terhadap Waktu Biodegradasi Mirra Amanda Syamsyyah; Myra Wardati Sari; Cengristitama Cengristitama; Lulu Nurdini
Eksergi Vol 20, No 2 (2023)
Publisher : Prodi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v20i2.9727

Abstract

The disposal plastic waste into the environtment is an important issue due to the natureof the origin of plastics that are difficult to decomposes naturally. Therefore, efforts are made to accelerate the degradation time by using natural polymers. Corn is one of the easily found sources of starch. Starch is one of the natural polymres that can be used for the manufacture of biodegradable plastics (bioplastics) because it is easily degradable, readily available and affordable but has shortcomings in mechanical properties and water absorption ability.The purpose of this study was to observe the effect of temperature variations 60; 70; 80 and 90°C with a drying time of 1; 2; 3 and 4 hours of biodegradation time. From this study, the best results were found at a temperature of 60°C with a drying time of 1 hour which obtained a degradation time of 5 days; average thickness 0.12 mm – 0.30 mm; the overall average water absorption is 4.04% and the average water resistance is 95.99%; tensile strength of 5.69 MPa and 5.54 MPa; elongation at break of 4% and 1.6%.
Penentuan Konstanta Isoterm Freundlich dan Kinetika Adsorpsi Karbon Aktif Terhadap Asam Asetat Setyorini, Dwi; Arninda, Andi; Syafaatullah, Achmad Qodim; Panjaitan, Renova
Eksergi Vol 20, No 3 (2023)
Publisher : Prodi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v20i3.10835

Abstract

Karbon aktif merupakan salah satu adsorben yang paling sering digunakan. Salah satu senyawa yang dapat diserap yaitu asam asetat. Untuk mengetahui kinerja adsoben lebih lanjut, maka diperlukan studi kinetika berdasarkan persamaan isotherm Freundlich. Isoterm Freundlich mampu menunjukkan jenis adsopsi apakah secara kimisorpsi atau fisisorpsi dan berlangsung secara multilayer. Studi kinetika pseudo first orde dan pseudo second orde dimaksudkan untuk mengetahui mekanisme dan karakteristik adsorpsi yang berlangsung. Penelitian ini bertujuan untuk mengetahui konstanta isotherm Freundlich dan kinetika adsorpsi karbon aktif terhadap asam asetat. Konsentrasi asam asetat yang digunakan untuk mengetahui konstanta freundlich yaitu 0,5M, 0,25M, 0,125M, 0,0625M, 0,03125M dengan lama waktu kontak selama 10 menit. Sedangkan kinetika adsorpsi dilakukan dengan menggunakan asam asetat yang berkonsentrasi 0,5 M dengan waktu adsorpsi 2 menit, 4 menit, 6 menit, 8 menit dan 10 menit. Kemudian filtrat di titrasi dengan NaOH 0,1N. Ukuran karbon aktif yang digunakan antara lain 180 mess, 420 mess dan 600 mess.  Data yang diperoleh dianalisis dengan persamaan freundlich, pseudo first orde dan pseudo second orde. Data analisis yang didapatkan nilai konstanta freundlich yaitu sebesar 50,00342 dan memenuhi kinetika orde dua yang artinya, proses adsorpsi dipengaruhi lebih dari satu faktor.
Studi Isoterm Adsorbsi dan Termodinamika Pada Proses Penyisihan Ion Fe (III) Menggunakan Pektin dari Kulit Pisang Lestari, Indriana; Ristianingsih, Yuli; Istiani, Alit; Anasstasia, Titi Tiara
Eksergi Vol 20, No 3 (2023)
Publisher : Prodi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v20i3.10033

Abstract

Adsorben berupa pektin berhasil diekstraksi dari kulit pisang menggunakan larutan asam kuat dan telah digunakan untuk menyisihkan ion Fe3+ dalam air. Pengaruh berbagai parameter terhadap proses adsorbsi, seperti waktu kontak, pH larutan, dosis adsorben, dan temperatur adsorbsi diinvestigasi dalam suatu sistem batch. Konsentrasi ion Fe3+ dalam larutan air diukur menggunakan Atomic Absorption Spectrometry . Efisiensi adsorbsi terbaik diperoleh pada waktu kontak selama 4 jam, pH larutan 2, dosis adsorben sebesar 3 g, dan temperatur 20oC. Mekanisme proses adsorbsi dan perubahan energi bebas Gibbs, entalpi, serta entropi telah dievalusi. Model isoterm Freundlich dan Temkin paling sesuai untuk menggambarkan mekanisme adsorbsi ion Fe3+ pada pektin dengan R2 berturut-turut 0,9871 dan 0,9591. Data parameter termodinamika membuktikan bahwa adsorpsi ion Fe3+ bersifat eksotermis dan berlangsung secara tidak spontan pada rentang temperatur 20 hingga 60ᵒC. Penelitian ini menunjukkan bahwa kulit pisang dapat dimanfaatkan sebagai adsorben murah yang menjanjikan untuk menghilangkan ion Fe3+ dalam air.