cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Seminar Nasional Teknik Kimia Kejuangan
ISSN : -     EISSN : -     DOI : -
Prosiding Seminar Nasional Teknik Kimia Kejuangan adalah media online dari makalah yang telah diseminarkan pada acara Seminar Nasional Teknik Kimia “Kejuangan” (SNTKK). SNTKK merupakan agenda tahunan yang diselenggarakan oleh Program Studi Teknik Kimia FTI UPN ”Veteran” Yogyakarta. Seminar ini merupakan sarana komunikasi bagi para peneliti dari perguruan tinggi, institusi pendidikan, serta lembaga penelitian maupun industri, dalam mengembangkan teknologi kimia untuk pengolahan sumber daya alam Indonesia.
Arjuna Subject : -
Articles 588 Documents
Studi Recovery Tembaga pada Proses Froth Flotation dari Bijih Tembaga Papua, Indonesia dengan Variasi pH dan Konsentrasi Kolektor Heimbach, Ivano; Petrus, Himawan Tri Bayu Murti; Prasetya, Agus; Idrus, Arifudin; Timotius, Daniel; Kusumastuti, Yuni; Sutijan, Sutijan
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2023: PROSIDING SNTKK 2023
Publisher : Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In the process of flotation of copper-bearing ore, several factors such as the concentration of the collector used and the pH of the fluid used can have an impact. In this study, observations were made on the influence of collector concentration and pH on the recovery of copper ores from Papua, Indonesia. The ore samples were obtained from three different site. Preparation of samples were conducted by crushing and sieving to obtain solid particles with a size of +200 mesh. The fine particles then fed into froth flotation device. Froth flotation operations were carried out at different operating condition namely pH (pH 3, pH 6, and pH 9), xanthate concentration (1300, 2000, and 2600 ppm), and time (3, 5, 7, and 14 minutes). The froth and tailings were collected separately and dried in an oven at 60oC. The feed, froth, and tailings were then subjected to EDX analysis to determine their compositions. The results of the experiment showed that higher collector concentrations did not necessarily lead to increased copper recovery. The appropriate pH conditions, however, could optimize copper recovery. The optimum conditions obtained from this experiment were xanthate concentration of 2000 ppm, pH of 3, and the ore sample 2
Pembuatan Biokompatibel Suture Anchor Berbasis 3D Printing Filament dari Nano Hidroksiapatit Berbahan Dasar Cangkang Keong Sawah Zhafira, Tesa Ulima; Berlian, Baskoro David; Karisma, Achmad Dwitama
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2023: PROSIDING SNTKK 2023
Publisher : Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Suture anchor is used to attach soft tissues to the bone. One of the materials that can be used for making suture anchors is hydroxyapatite [Ca10(PO4)6(OH)2]. Hydroxyapatite (HAp)  has similarities with the properties of bone minerals, so it has the potential to be used as a material for making biocompatible suture anchors. However, HAp is brittle and has poor strength, so HAp is usually combined with polymers such as composites to overcome the limitations of its mechanical properties. One of the polymers that can be used is Polycaprolactone (PCL). In this study, HAp was synthesized from rice field snail shells, due to its high calcium contents.  Further, the combination of HAp and PCL in the manufacture of 3D printing filaments such as suture anchors was obtained. The variables used in this study were the mixing ratio of HAp:PCL in making filaments with a mixing ratio of 0.5:9.5; 1:9 ; 2:8. The results of various variables shows that the tensile strength most optimal composite in 7,3 % when mixing HAp:PCl is 0.5:9,5.
Analisis Pengaruh Variasi Debit Air (QL) dan Debit Gas (QG) terhadap Koefisien Transfer Oksigen (KLa) pada Performa Microbubble Generator Mistoro, Niesa Hanum; Saraswati, Sri Puji; Ahmad, Johan Syafri Mahathir; Wiratni, Wiratni
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2023: PROSIDING SNTKK 2023
Publisher : Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The domestic wastewater treatment plant is usually installed using anaerobic system which has the disadvantage for low conversion process and large volume required. While the effectiveness of aerobic system can be increased by high consumption of energy to supply the oxygen. This study investigates the performance of Microbubble Generator (MBG) for wastewater treatment. The MBG utilizes the hydrodinamics of wastewater flow in the nozzle to provide energy-saving aeration. In this study, the clean water non-steady state test method was selected to find the overall oxygen transfer coefficient (KLa). The experiment was conducted by increasing the concentration of Dissolved Oxygen (DO) using MBG installed with submersible pump (water discharge, QL=80 l/min) and variations of gas discharge (QG) (0.15 l/min and 0.30 l/min). The KLa average results on QL 80 l/min at QG 0.15 l/min showed 0.01996/min and at QG 0.30 l/min showed 0.02564/min. These results indicate that the greater gas discharge (QG) can produce a greater KLa value. This happens because the more air is injected into the water and forms into micro-sized bubbles, the greater the rate of transfer oxygen to the liquid phase.
Sintesis Asil Gliserol Melalui Reaksi Esterifikasi Asam Oleat dengan Gliserol Husada, Caesar Purnama; Sulistyo, Hary; Sediawan, Wahyudi Budi
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2023: PROSIDING SNTKK 2023
Publisher : Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Acyl glycerol derivatives from oleic acid, especially monoacylglycerol (MAG) and diacylglycerol (DAG), are products that is widely used in the food, lubricant, and cosmetic industries. Acyl glycerol can be obtained through esterification reaction of glycerol with fatty acids.  This study aims to determine the effect of temperature on the conversion and amount of acyl glycerol produced. This research was conducted using a batch system with temperature variations of 80°C, 100°C, and 120°C with HCl 1%wt as catalyst and 1:1 reactant mole ratio (glycerol: oleic acid) for 2 hours reaction time. Samples were taken every 10 minutes, then the samples were analyzed using Thin Layer Chromatography (TLC) to determine the fraction of the product produced. The experimental results showed that increasing the temperature will produce higher conversions and acyl glycerols. The highest conversion of oleic acid occurred at 120°C (43.016%), with mole percentage of 1,796% monoacylglycerol (MAG), 3,820% diacylglycerol (DAG), and 5,813% triacylglycerol (TAG).
Bioconversion of Fruit Wastes into High Economic Value of Lipids using Heterotrophic Microalgae Aurantiochytrium from Mangrove Forests of Bunyu Island, North Kalimantan Suhendra, Suhendra; Hutari, Andri; Pratiwi, Sekar; Sari, Hutri Puspita
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2023: PROSIDING SNTKK 2023
Publisher : Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Aurantiochytrium microalgae is recognized as heterotrophic microalgae enables to produce high economic value of lipids for the use in health care industries. This research presents the production of biomass containing lipids through the bioconversion of fruit waste using Aurantiochytrium microalgae. Aurantiochytrium microalgae isolate was obtained from isolated mangrove leaves in the mangrove forest of Bunyu Island, North Kalimantan. The production process takes place in three stages, namely standing culture (SC), pre-culture (PC), and main culture. The SC and PC stages took place 48 hours respectively, while the MC took place 120 hours. The source of nutrition at the main cultivation stage (MC) used monosodium glutamate (MSG) as a nitrogen source, while the carbon source was from fruit waste. Amount of 250 grams of fruit waste was mixed and blended, added with 250 ml of water and then sonicated. The mass ratio of nitrogen source and carbon source was 1:3. The maximum of observed microalgal cell diameters for each stage were 14.5 μm (SC), 19.2 μm (PC) and 25.5 μm (MC). Produced biomass in this experiment has the characteristics of a yellow emulsion liquid, pH 6.2, fishy smell and total dissolved solids (TDS) of 4,820 ppm and a wet biomass of 68 g/l
Prediksi Kesetimbangan Cair-Cair pada Sistem Air + Asam Format + Pelarut Organik dengan Model UNIFAC Azaim, Ahmad Hayiz; Ramadhani, Farah Amirah Firyal; Altway, Saidah
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2023: PROSIDING SNTKK 2023
Publisher : Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Formic acid can be produced by a fermentation process, producing an aqueous solution in the form of a fermentation broth. The separation of formic acid from water is challenging due to the presence of an azeotropic mixture. The aim of this research is to predict the liquid-liquid equilibrium data using the universal functional activity coefficient (UNIFAC) model for formic acid + organic solvent + water systems at 298.15 and 323.15 K and atmospheric pressure (101.3 kPa). The liquid-liquid equilibrium data are required as a reference for optimal design of formic acid extraction process. This research also introduces new two-phase systems for the separation of formic acid from aqueous solution and expands the scope of thermodynamic studies on formic acid extraction. The extraction performance was in the order of MIPK > 2-hexanone > MIBK. The temperature has no significant influence on the extraction performance. The prediction of formic acid + water + MIBK system at 298,15 K and atmospheric pressure (101.3 kPa) was also compared with the experimental data with the RMSD 9,76 %. This result represented that UNIFAC was a reliable model for the prediction of liquid-liquid equilibria of system involving formic acid.
Analisa Kandungan Logam Berat Krom pada Air Sumur Menggunakan Spektrofotometri Triastuti, Warlinda Eka; Agustiani, Elly; Sampurno, Ade Citra Oktaviana Elok; Fitria, Yustia Dwi; Fauziyah, Hanifah; Rahma, Sunia; Rudianto, Anaral Al Ardhi; Amalia, Firda; Damayanti, Avisa
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2023: PROSIDING SNTKK 2023
Publisher : Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Clean water has many uses in human daily life. The quality of clean water can be seen from three aspects: chemical, physical, and biological. Chromium (VI) or Cr (VI) is one type of heavy metal that can be harmful to human health if it is present in water because it is carcinogenic. This research will determine the level of chromium in well water samples in the Kalipecabean, Keputih, Kapas Madya, Nginden, and Madura areas using UV-Vis spectrophotometry and compare it with the Regulation of the Minister of Health of the Republic of Indonesia Number: 32/MENKES/PER/2017. The initial stage of the experiment includes the preparation of reagent solutions, followed by the calibration of the instrument and the preparation of a standard curve by making standard solutions with concentrations of 1, 2, 3, 4, and 5 ppm. The standard solutions are then tested for their absorbance using a spectrophotometer. The final stage is adding reagents to the water samples and measuring their absorbance using a spectrophotometer. From the results of the study, it was found that the levels of chromium in the well water samples in the Kalipecabean, Keputih, Kapas Madya, Nginden, and Madura areas are 0.004 ppm, 0.005 ppm, 0.005 ppm, 0.002 ppm, and 0.003 ppm, respectively. The experimental results show that the level of chromium contained in the well water is relatively low and still meets the maximum chromium content level in water according to the Regulation of the Minister of Health of the Republic of Indonesia Number: 32/MENKES/PER/2017.
Karakteristik Morfologi dari Formulasi Pupuk NPK Coated dengan Enkapsulasi Starch-PVA-Glycerol Habibi, Wildan; Purnomo, Chandra Wahyu; Perdana, Indra
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2023: PROSIDING SNTKK 2023
Publisher : Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In modern agriculture, the application of NPK fertilizer plays an important role in food security. However, most commercial uncoated fertilizers have low nutrient absorption efficiency with 30-70% nutrient loss, advances to financial losses for farmers and causing environmental issues. Slow-release fertilizer (SRF) is the best solution to decrease loss rate, supplying nutrients sustainably, and reduces potential negative environmental effects. These fertilizers are made by physically encapsulating NPK fertilizer with organic hydrophobic materials (starch-polyvinyl alcohol (PVA)-glycerol). Double layered encapsulation is formulated by in-situ copolymerization of starch with vinyl acetate monomer from PVA in different ratios. Glycerol is added to increase the film compatibility. Scanning Electron Microscope (SEM) followed by Energy Dispersive X-ray (EDX) analysis reveals the morphological characteristic of uncoated and coated NPK samples. The surface micrograph of uncoated NPK exhibits fine spire crystals that are intensely cemented on to the surface with some bigger crystals of potassium chloride. The gaps and pores are also visible. The SEM micrographs of coated NPK depict layering and agglomeration that is a clear indication of the coating. A higher ratio of PVA increases agglomeration on the surface of coated NPK, representing dense and complete coverage with less pores and cavities occurs
Sintesis dan Karakterisasi Hidroksiapatit Cangkang Rajungan dengan Variasi Suhu Kalsinasi dan Konsentasi KH2PO4 menggunakan Metode Presipitasi Sebagai Sediaan Biomaterial Implan Tulang Romadhona, Novelia Gita; Syafira, Nesha Permata; Gumelar, Tobing; Rizqiyah, Vita Fatichah; Ningrum, Eva Oktavia
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2023: PROSIDING SNTKK 2023
Publisher : Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Bone implants are mostly made of non-degradable metal materials that are toxic to the body. An alternative biodegradable material being developed is Poly-L-Lactic Acid (PLLA). However, PLLA has the disadvantage of being incompatible with bone tissue. So, materials that are biodegradable and biocompatible are needed, such as hydroxyapatite, which has similarities with the minerals in bone and teeth, it suitable as an alternative biomaterial in the biomedical. This research aims to determine the effect of synthesis conditions, with calcination temperature (850, 900, 950, 1000°C) and KH2PO4 concentration (0.25, 0.5, 0.75, 1 M), on the production of hydroxyapatite using raw materials from local blue crab shells, in terms of calcium content, functional group presence, and conformity of hydroxyapatite peaks with JCPDS 09-0432. The synthesized product was characterized using XRF, which showed a relatively high calcium in crab shells of 94.89% at calcination temperature 850°C. The FTIR test results after the mixing of KH2PO4 with CaO showed the formation of hydroxyapatite functional groups, namely OH- and PO43-, in all variables. The XRD test results showed that at 850°C and KH2PO4 concentration of 0.75 M the main peak of hydroxyapatite was closest to JCPDS 09-0432, at a diffraction angle (2θ) of 31.7634.
Studi Perancangan Material Komposit Berbahan Dasar Kitosan dan Selulosa Sebagai Langkah Pengendalian Limbah Tekstil Methylene Blue Budiman, Yosef; Putra, Eka Rahmat; Lestari, Ajeng Yulianti Dwi
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2023: PROSIDING SNTKK 2023
Publisher : Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The amount of methylene blue (MB) in water bodies is one of the environmental issues that still need to be considered. The vast concentration of MB may increase the chemical oxygen demand level, so it has the potential to disrupt aquatic ecosystems. On the other hand, the adsorption process is one of the best methods that functionalizes as a utility for dye removal. This research studied the MB adsorption characteristic using cellulose-based adsorbent from banana fronds. Adsorbents were synthesized and modified using chitosan, bentonite, and acid addition. The adsorption process occurred at various concentrations of MB (40, 60, 80, 100, and 120 ppm) then the result will be proved and calculated by analysis using UV Vis and FTIR Spectrophotometer. The result showed that the bentonite addition could not increase the adsorption capacity optimally due to fluctuating spectrum of UV-Vis. In conclusion, the adsorbent can absorb MB in wastewater which is the optimal condition at 80 ppm for 24 hours.