cover
Contact Name
Agung Setia Budi
Contact Email
agungsetiabudi@ub.ac.id
Phone
+62341-577911
Journal Mail Official
jtiik@ub.ac.id
Editorial Address
Fakultas Ilmu Komputer Universitas Brawijaya Gedung F FILKOM Lt. 8, Ruang BPJ Jalan Veteran No. 8 Malang Indonesia - 65145
Location
Kota malang,
Jawa timur
INDONESIA
Jurnal Teknologi Informasi dan Ilmu Komputer
Published by Universitas Brawijaya
ISSN : 23557699     EISSN : 25286579     DOI : http://dx.doi.org/10.25126/jtiik
Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) merupakan jurnal nasional yang diterbitkan oleh Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya (UB), Malang sejak tahun 2014. JTIIK memuat artikel hasil-hasil penelitian di bidang Teknologi Informasi dan Ilmu Komputer. JTIIK berkomitmen untuk menjadi jurnal nasional terbaik dengan mempublikasikan artikel berbahasa Indonesia yang berkualitas dan menjadi rujukan utama para peneliti. JTIIK di akreditasi oleh Kementerian Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia Nomor: 36/E/KPT/2019 yang berlaku sampai dengan Volume 11 Nomor 2 Tahun 2024.
Articles 1,288 Documents
Case Based Reasoning Diagnosis Penyakit Cardiovascular Dengan Metode Simple Matching Coefficient Similarity Faizal, Edi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 1 No 2: Oktober 2014
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (731.304 KB) | DOI: 10.25126/jtiik.201412116

Abstract

Abstrak Penyakit kardiovaskuler atau cardiovascular disease (CVD) menurut definisi WHO adalah istilah bagi serangkaian gangguan jantung dan pembuluh darah.  Data badan kesehatan dunia WHO (2012) menunjukan bahwa CVD adalah faktor penyebab kematian nomor satu didunia dan berdasarkan data Riset Kesehatan Dasar (RISKESDAS) Kementerian Kesehatan Republik Indonesia tahun 2007 menunjukkan, penyakit yang termasuk kelompok CVD menempati urutan teratas penyebab kematian di Indonesia. Ditinjau dari sisi ketersediaan tenaga ahli dibidang cardiovascular, saat ini Indonesia hanya memiliki  sekitar  500 dokter spesialis penyakit jantung dan pembuluh darah. Artinya dengan jumlah penduduk Indonesia yang mencapai 240 juta, rasio dokter spesialis jantung dan pembuluh darah adalah 1:480.000 penduduk. Jumlah ini masih sangat kurang dibandingkan dengan kebutuhan penduduk di Indonesia. Rasio yang diharapkan adalah 1:250.000 penduduk. Penelitian ini menerapkan case-based reasoning untuk membangun sebuah sistem yang memiliki kemampuan untuk mendiagnosa penyakit cardiovascular berdasarkan kemiripan (similaritas) pada kasus-kasus terdahulu mengunakan metode simple matching coefficient similarity. Hasil pengujian menunjukan bahwa sistem yang dibangun memiliki nilai sensitifitas 97,06%, spesifisitas 64,29%, PPV 86,84%, NPV 90,00%, akurasi 87,50% dengan tingkat kesalahan (error rate) sebesar 12,50%. Kata kunci: cardiovascular, case based reasoning, simple matching coefficient Abstract Cardiovascular disease (CVD) according to the WHO definition is the term for a series of heart and blood vessel disorders . World Health Organization (2012) showed that CVD is the factor number one cause of death in the world and based on data from the Health Research (RISKESDAS) Ministry of Health of the Republic of Indonesia in 2007 showed, diseases including CVD group occupy the top cause of death in Indonesia. In terms of the availability of experts in the field of cardiovascular, Indonesia currently only have around 500 specialist heart and blood vessel disease (SpJP). This means that the number of Indonesian population reached 240 million, the ratio of specialist is 1:480.000 population . This amount is very less compared to the needs of the population in Indonesia . Expected ratio is 1:250,000 population. This study will apply a case -based reasoning to build a system that has the ability to diagnose cardiovascular disease based on the similarity in the previous cases using  method  of  simple  matching coefficient . Test results the system showed  of sensitivity value 97,06%, specificity of 64,29%, PPV 86,84%, NPV 90,00% and accuracy of 87,50% with an error rate of 12,50%. Keywords: cardiovascular, case-based reasoning, simple matching coefficient
Pengembangan Aplikasi Game Musik Tradisional Bali Megamelan Berbasis Multiplatform Aribawa, Komang
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 5 No 1: Februari 2018
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (932.804 KB) | DOI: 10.25126/jtiik.201851493

Abstract

Gong Kebyar adalah salah satu gamelan baru yang merupakan perkembangan dari dihilangkannya beberapa instrument dari Gamelan Gong Gede. Gamelan Gong Kebyar dugunakan untuk mengiringi tari-tarian dan juga untuk menyajikan gending-gending Pategak (musik instrumental). Penelitian ini bertujuan untuk (1) Mengimplementasikan aplikasi game musik tradisional Bali Megamelan berbasis multiplatform. (2) Untuk mengetahui respon pengguna terhadap pengembangan aplikasi game musik tradisional Bali Megamelan berbasis multiplatform. Aplikasi ini dikembangkan menggunakan metode ADDIE (analyze, design, development, implementation & evaluation). Dengan dikembangkannya aplikasi ini, diharapkan masyarakat dapat mengenal dan belajar memainkan gamelan khususnya Gamelan Gong Kebyar. Seluruh Kebutuhan fungsional aplikasi ini telah berhasil diimplementasikan sesuai dengan rancangannya. Secara umum aplikasi mendapatkan respon sangat baik dilihat dari beberapa hasil pengujian angket. : a) uji ahli isi dengan persentase 92 %, b) uji ahli media dengan persentase 93% dan c) uji respon dengan hasil persentase 94%.
Optimasi Jaringan Serat Optik Menggunakan Metode Algoritma Genetika (Studi Kasus Unisma) Okiandri, Diki; Pramono, Sholeh Hadi; Yudaningtyas, Erni
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 3 No 1: Maret 2016
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1001.75 KB) | DOI: 10.25126/jtiik.201631161

Abstract

AbstrakAbstrak–-Peningkatan penggunaan komputer di kampus pendidikan mengakibatkan lalu lintas data yang padat pada jaringan komunikasi.  Di Universitas Islam Malang (Unisma) terdapat lebih dari 500 komputer yang terkoneksi dengan internet menggunakan media kabel dan akses hotspot. Infrastruktur jaringan eksisting di Unisma saat ini menggunakan kabel Backbone Fiber Optic Multimode dengan routing static dan topologi yang dipakai adalah topologi Mesh. Banyaknya pengguna yang berkomunikasi di jaringan mengakibatkan lalu lintas data yang padat sehingga menyebabkan waktu tunda atau antrian yang lama. Algoritma genetika adalah sebuah algoritma pencarian yang didasarkan pada mekanisme genetika alamiah yang juga digunakan sebagai algoritma optimasi kinerja jaringan.Penelitian ini membandingkan kinerja jaringan eksisting dengan simulasi optimasi menggunakan Algoritma Genetika. Dilakukan pengukuran dan pengambilan data-data berupa waktu tempuh, juga dilakukan rekayasa perangkat lunak dengan bantuan visual studio untuk melakukan pemodelan sebagai pembanding. Hasilnya optimasi dengan algoritma genetika mampu mencari jalur tercepat serta meningkatkan kecepatan pengiriman paket data dengan menurunkan waktu tempuh sebesar 53.5% dan meningkatkan data rate sebesar 54.75% dibandingkan dengan metode antrian pada jalur existing.Kata kunci: Algoritma Genetika, Backbone Fiber Optik, Optimasi, Waktu Tempuh AbstractAbstract-- Increased use of computers in education campus resulted in dense data traffic on communications networks. At the Islamic University of Malang (Unisma) there are more than 500 computers connected to the Internet using a wired media and hotspot access. Unisma existing network infrastructure in current use the Multimode Fiber Optic Backbone cable with static routing and Mesh topology. These lots number of users on the network resulting in dense data traffic that lead to long delays or long queues. Genetic algorithm is a search algorithm that is based on the natural genetic mechanism which also being used in optimizing network performance. This study compared the performance of existing network and a simulation of optimization using Genetic Algorithms. Measurement and retrieval of data consist of transfer time, also we built software engineering using visual studio program as a comparison model.The result of this study shows that optimization using genetic algorithm is able to find the fastest path and increase the speed of transmission of data packets by reducing transfer time by 53.5% and increase the data rate of 54.75% compared to the queuing method used on the existing network. Keywords: Genetic Algorithm, Fiber Optic Backbone, Optimization, Transfer time
Peningkatan Kualitas Citra Stego pada Adaptive Pixel Block Grouping Reduction Error Expansion dengan Variasi Model Scanning pada Pembentukan Kelompok Piksel Prabowo, Hendro Eko; Ahmad, Tohari
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 5 No 2: April 2018
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (143.12 KB) | DOI: 10.25126/jtiik.201852633

Abstract

Kebutuhan komunikasi yang terus bertambah dan ditandai dengan meningkatnya jumlah IP traffic dari 744 EB menjadi 1.164 EB menjadikan keamanan sebagai salah satu kebutuhan utama dalam menjaga kerahasiaan data. Adaptive Pixel Block Grouping Reduction Error Expansion (APBG-REE) sebagai salah satu metode data hiding dapat diterapkan untuk memenuhi kebutuhan tersebut. Metode ini akan membagi citra carrier menjadi blok-blok dan membentuknya menjadi kelompok-kelompok piksel. Hasil dari proses ini akan dimanfaatkan untuk menyembunyikan data rahasia. Namun, metode ini memiliki kekurangan, yaitu belum diketahuinya metode scanning terbaik dalam pembentukan kelompok piksel untuk menciptakan citra stego dengan kualitas tinggi. Untuk mengatasi masalah ini, kami mengusulkan 4 mode (cara) scanning berdasarkan arah scanning tersebut. Mode scanning tersebut memberikan hasil yang berbeda-beda untuk masing-masing citra stego yang diujikan. Namun berdasarkan hasil uji coba, setiap mode scanning mampu menjaga kualitas citra stego diatas 57,5 dB. Hasil ini akan meningkat seiring dengan berkurangnya jumlah shifted pixel yang terbentuk. AbstractThe need of communication has increased continously which is represented by the rise of number of IP traffic, from 744 EB to 1.164 EB. This has made data security one of the main requirements in terms of securing secret data. Adaptive Pixel Block Grouping Reduction Error Expansion (APBG-REE) as one of data hiding methods can be implemented to meet that requirement. It divides the carrier image into blocks which are then used as pixel groups. The result of this process is to be a space for secret data. However, this method has a problem in the scanning when creating pixel groups to generate a high quality stego image. To handle this problem, we propose four scanning models base on its direction. This means that the scanning can be done row-by-row or column-by-column. Base on the experiment, we find that those modes deliver various results and each of them is able to maintain the stego quality of more than 57,5 dB. This result increases along with the decreasing the number of shifted pixels.
Optimasi Penjadwalan Pengerjaan Software Pada Software House Dengan Flow-Shop Problem Menggunakan Artificial Bee Colony Fhadli, Muhammad; Jauhari, Daneswara; Prabowo, Dhimas Anjar; Hanafi, Anang; Sunaryo, Aryeswara; Cholissodin, Imam
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 3 No 4: Desember 2016
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (695.695 KB) | DOI: 10.25126/jtiik.201634226

Abstract

AbstrakPenelitian ini mengusulkan sebuah implementasi terkait optimasi penjadwalan pengerjaan software pada software house dengan Flow-Shop Problem (FSP) menggunakan algoritma Artificial Bee Colony (ABC). Dimana dalam FSP dibutuhkan suatu solusi untuk menyelesaikan suatu job/task dengan meminimalkan total cost yang dikeluarkan. Terdapat constraint yang perlu diperhatikan dalam objek permasalahan penelitian ini, yaitu lama waktu penyelesaian keseluruhan projek software yang tidak pasti. Dalam penelitian ini akan disusun sebuah representasi solusi yaitu berupa urutan pengerjaan projek dengan total waktu pengerjaan yang minimum. Pengujian akan dilakukan dengan tiga kali percobaan untuk setiap kondisi uji coba, yaitu uji coba batas parameter iterasi dan uji coba batas parameter limit. Dari hasil pengujian didapatkan bahwa penggunaan algoritma yang dibahas dalam penelitian ini bisa mengurangi waktu pengerjaan jika jumlah iterasi dan jumlah colony diperbesar.Kata kunci: optimasi, flow-shop problem, artificial bee colony, swarm intelligence, meta-heuristik.AbstractThis research proposed an implementation related to software execution scheduling process at a software house with Flow-Shop Problem (FSP) using Artificial Bee Colony (ABC) algorithm. Which in FSP required a solution to complete some job/task along with its overall cost at a minimum. There is a constraint that should be kept to note in this research, that is the uncertainty completion time of its jobs. In this research, we will present a solution that is a sequence order of project execution with its overall completion time at a minimum. An experiment will be performed with 3 attempts on each experiment conditions, that is an experiment of iteration parameter and experiment of limit parameter. From this experiment, we concluded that the use of this algorithm explained in this paper can reduce project execution time if we increase the value of total iteration and total colony.Keywords: optimization, flow-shop problem, artificial bee colony, swarm intelligence, meta-heuristic.
Optimasi Naïve Bayes Classifier Dengan Menggunakan Particle Swarm Optimization Pada Data Iris Muhamad, Husin; Prasojo, Cahyo Adi; Sugianto, Nur Afifah; Surtiningsih, Listiya; Cholissodin, Imam
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 4 No 3: September 2017
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (746.584 KB) | DOI: 10.25126/jtiik.201743251

Abstract

AbstrakKlasifikasi adalah proses identifikasi obyek kedalam sebuah kelas, kelompok, atau kategori berdasarkan karakteristik yang telah ditentukan sebelumnya. Secara singkat, klasifikasi merupakan pengelompokan obyek berdasarkan kelompoknya yang biasanya disebut dengan kelas (class). Tak hanya klasifikasi, proses pengelompokkan obyek juga dapat dilakukan dengan menggunakan teknik clustering yang merupakan pengelompokan obyek berdasarkan kemiripan antar obyek. Salah satu metode klasifikasi yang sering digunakan adalah Naïve Bayes Classifier. Menurut beberapa penelitian, Naïve Bayes Classifier memiliki beberapa kelebihan yaitu, cepat dalam proses perhitungan, algoritma yang sederhana dan akurasi yang tinggi. Namun probabilitas pada Naïve Bayes Classifier tidak bisa mengukur seberapa besar tingkat keakuratan sebuah prediksi, hasil akurasi metode ini juga masih kurang jika dibandingkan dengan metode C4.5, selain itu metode naïve bayes juga memiliki kelemahan pada seleksi atribut. Untuk menyelesaikan permasalahan tersebut, algoritma particle swarm optimization (PSO) dapat digunakan untuk melakukan pembobotan atribut untuk meningkatkan akurasi naïve bayes classifier.Kata kunci: Naïve Bayes Classifier, Particle Swarm Optimization, klasifikasi, pembobotan atribut.AbstractClassification is the process of identifying objects into a class, group or category based on the predetermined characteristics. In other words, classification is a process to group objects based on their class. Grouping objects can be done not only by classification but also by clustering, which is grouping objects according to the similarity between objects. One of the most frequently used methods for classification is Naïve Bayes Classifier. According to some researchers, Naïve Bayes methods has its strength which is a simple and fast algorithm that can acquire a high accuracy. However, the probability of Naïve Bayes methods cannot measure the level of accuracy of a prediction, the accuracy of the results of this method is still less than the C4.5 method, and Naïve Bayes method has a deficiency on the selection of attributes. To solve this problem, Particle Swarm Optimization Algorithm (PSO) can be used to give weight to attributes to improve the accuracy of Naïve Bayes Classifier.Keywords: Naïve Bayes Classifier, Particle Swarm Optimization, classification, attribute weighting.
Pencarian Ruang Warna Kulit Manusia Berdasarkan Nilai Karakteristik (λ) Matrik Window Citra Adikara, Putra Pandu; Rahman, Muh. Arif; Santosa, Edy
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 1 No 1: April 2014
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (880.856 KB) | DOI: 10.25126/jtiik.201411102

Abstract

Abstrak Perkembangan transaksi dan distribusi data yang sangat besar, terutama saat teknologi informasi dan komunikasi melalui  web bisa dijangkau oleh siapa saja menggunakan perangkat yang semakin beragam, membuat pengguna memerlukan aplikasi yang serba mudah untuk digunakan. Diantaranya adalah identifikasi obyek yang berada dalam data multimedia berupa teks, gambar maupun suara. Deteksi warna, terutama deteksi warna kulit manusia adalah tahap awal identifikasi keberadaan manusia pada citra 2 dimensi. Terdapat sejumlah metode untuk menentukan apakah suatu pixel pada gambar tersebut merupakan warna kulit manusia. Penelitian sebelumnya telah membuat ruang warna berbasis pixel diantaranya adalah ruang warna RGB, normalisasi RGB, HIS/HSV, TSL, YCbCr dll. Suatu matrik bujur sangkar NxN mempunyai nilai karakteristik (λ) sebanyak N dimana nilai masing-masing berupa bilangan real. Suatu citra dapat dipecah menjadi M matrik bujur sangkar dan kemudian dicari nilai λ  nya. Penelitian ini akan mencari ruang warna kulit manusia berdasarkan nilai karakteristik (ƛ) matrik window citra. Dari hasil pengujian hamper semua warna kulit dapat dideteksi, namun image untuk warna kulit yang tidak mencolok beberapa obyek pada image dapat ditampilkan dengan baik meskipun bukan kulit. Kata kunci: Citra Kulit, Nilai Karakteristik (λ), Matrik Window Abstract The development of the transaction and distribution of huge data, especially when the information technology and communication via the web can be reached by anyone using the increasingly diverse, making the user requires an application that completely easy to use. Among them is the identification of objects that are in the multimedia data such as text, images and sound. Color detection, particularly the detection of human skin color is an early stage identification of human presence on the 2-dimensional image. There are a number of methods to determine whether a pixel in the image is the color of human skin. Previous studies have made such pixel based color space is RGB color space, normalized RGB, HIS/HSV, TSL, YCbCr etc. An NxN square matrix has eigenvalues ​​(λ) of N where the value of each form of real numbers. An image can be broken down into a square matrix M and then sought its λ value. This study will look for human skin color space based on the value of the characteristic (ƛ) matrix image window. From the test results almost all skin colors can be detected, but the image for an inconspicuous color multiple objects in the image can be displayed well although not leather. Keywords: skin image, value of the characteristic(λ), Matrix Windows
K-Modes Clustering untuk Mengetahui Jenis Masakan Daerah yang Populer pada Website Resep Online (Studi Kasus: Masakan Banjar di cookpad.com) Indriani, Fatma; Budiman, Irwan
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 4 No 4: Desember 2017
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1144.909 KB) | DOI: 10.25126/jtiik.201744548

Abstract

AbstrakPada makalah ini dipaparkan clustering pada data resep masakan daerah Banjar untuk mengetahui jenis makanan yang paling banyak di-post secara online oleh pengguna website recipe sharing. Pertama-tama data resep sebanyak 355 dikumpulkan dari suatu website resep, untuk selanjutnya dilakukan ekstraksi data bahan dan pembersihan. Metode clustering yang dipilih adalah k-modes karena cocok digunakan pada data kategorikal. Berdasar metode Elbow, jumlah cluster yang ideal adalah k=4 dan k=8. Jumlah cluster k=4 menghasilkan kelompok yang lebih umum, sedangkan k=8 menghasilkan kelompok yang lebih spesifik. Adapun kelompok yang berhasil diidentifikasi untuk k=4 adalah sayur asam, soto banjar, masakan gurih lain-lain, kue dan bubur manis. Sedangkan kelompok dengan jumlah cluster k=8 adalah sayur asam, soto banjar, kue basah, masakan gurih lain-lain, masak habang, bubur manis, kuah ketupat, dan masakan gurih asam. Evaluasi nilai purity menunjukkan nilai masing-masing 0,825 untuk k=4 dan 0,831 untuk k=8.Kata kunci: data mining, clustering, k-modes, resep masakan, bahanAbstractIn this paper, we cluster user-submitted recipes of Banjar regional cuisine to find out which type of cuisine are popular according to its ingredients. 355 recipes are collected from a recipe sharing website, then the ingredients extracted and cleaned. The clustering method chosen is k-modes because it is suitable for categorical data. Based on the Elbow method, the ideal number of clusters is k = 4 and k = 8. The number of clusters k = 4 produces more general cuisines group, whereas k = 8 produces more specific groups. The groups identified for k = 4 are (1) “sayur asam” (sour soup), (2)“soto banjar” (Banjar chicken soup), (3) savory dishes, and (4) sweet dishes. While the group with the number of clusters k = 8 consists of (1)“sayur asam” (sour soup)  (2) “soto banjar”, (3) Banjar sweet puddings, (4) various savory dishes, (5) “masak habang” (Banjar sweet chili dishes), (6) sweet porridge, (7) “kuah ketupat” (spicy coconut soup) and (8) various savory sour dishes. The purity of clusters are shown to be 0.825 for k=4 and 0.831 for k=8.Keywords: clustering, k-modes, data mining, recipe, ingredient
Identifikasi Jenis Attention Deficit Hyperactivity Disorder (ADHD) Pada Anak Usia Dini Menggunakan Metode Neighbor Weighted K-Nearest Neighbor (NWKNN) Fadila, Putri Nur; ., Indriati; Ratnawati, Dian Eka
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 3 No 3: September 2016
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (687.131 KB) | DOI: 10.25126/jtiik.201633195

Abstract

AbstrakFase pertumbuhan dan perkembangan merupakan fase terpenting pada manusia, khususnya pada anak usia dini. Pertumbuhan dan perkembangan pada anak mempengaruhi bagaimana seorang anak tersebut ketika mencapai dewasa baik dari segi mental, fisik, maupun kecerdasaannya. Tentunya tidak semua anak mengalami perkembangan yang normal, bisa saja ada yang mengalami gangguan perkembangan. Salah satu gangguan perkembangan yang sering dialami pada anak usia dini adalah ADHD (Attention Deficit Hyperactivity Disorder). Untuk ADHD sendiri terdapat tiga jenis yaitu Inattention, Impulsif, dan Hyperactivity. Pada penelitian ini akan dilakukan identifikasi jenis ADHD berdasarkan gejala yang muncul menggunakan metode klasifikasi Neighbor Weigted K-Nearest Neighbor (NWKNN). Metode NWKNN merupakan metode perkembangan dari metode KNN, yang membedakan adalah pada NWKNN terdapat proses pembobotan terhadap setiap jenis yang akan di klasifikasikan. Pada penelitian ini akan dilakukan identifikasi jenis yang terdiri atas 4 jenis meliputi Inattention, Impulsif, Hyperactivity, dan Tidak ADHD. Hasil dari penelitian ini menunjukkan bahwa metode NWKNN dapat melakukan identifikasi jenis ADHD dengan baik ketika data latih yang digunakan sebanyak 80 data dengan data uji sebanyak 20 data, nilai K=10, dan nilai E=4 dengan hasil akurasinya mencapai 95%. Pada penelitian ini juga membuktikan bahwa metode NWKNN memiliki rata-rata akurasi 2% lebih baik dibandingkan metode KNN dalam melakukan identifikasi jenis ADHDKata Kunci: Perkembangan, Anak Usia Dini, ADHD, dan Metode NWKNNAbstractGrowth and development are the most important fase for human, especially for early age children. Growth and development indeed give an influence on how the child in mentalism, physical and shrewdness aspect when they are getting older. Not every children has a normal development, some of them can have development disruption. One of development disruptions that happen often for early age children is ADHD (Attention Deficit Hyperactivity Disorder). For ADHD, it has three kinds, which are inattention, impulsif and hyperactivity. In this research, the researcher will detect the kind of ADHD based on symptom arise using Neighbor Weigted K-Nearest Neighbor (NWKNN) method. NWKNN method is one of development methods from KNN method, the different is on NWKNN there is integrity process on every kind which being classified. In this research, there will be done some identification kind which consist of 4 kinds, Inattention, Implusif, Hyperactivity and not ADHD. The result of this research shows that NWKNN method able to done the ADHD identification well when data consist of 80 data training, 20 data testing, K score=10, and E score=4 with accuracy result that reach 95%. In this research also prove that NWKNN method have an accuracy of 2% better than KNN method to detect kind of ADHD.Keywords: Development, Early Age Children, ADHD, and NWKNN Method
Desain Protokol Suara Sebagai Pengendali Dalam Smart Home Menggunakan FPGA Prasetio, Barlian Henryranu; Syauqy, Dahnial
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 4 No 2: Juni 2017
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (495.69 KB) | DOI: 10.25126/jtiik.201742306

Abstract

AbstrakSmart home adalah suatu sistem yang menggunakan komputer dan teknologi informasi untuk mengendalikan peralatan yang terdapat di rumah seperti jendela dan lampu. Sistem dapat berupa sistem control sederhana hingga sistem yang kompleks. Komputer/mikrokontroler yang berbasis jaringan internet/ethernet dilengkapi dengan sistem cerdas dan sistem otomasi sehingga mampu membuat rumah menjadi bekerja secara otomatis. Banyak perangkat komputer/mikrokontroler yang dapat diimplementasikan sebagai pengendali dalam smart home. Sistem pengendali smart home pada penelitian ini menggunakan Xilinx xpartan-3e yang mengendalikan peralatan dalam rumah melalui jaringan LAN (Local Area Networking). Sistem pengendali ini berkomunkasi menggunakan broadcast voice pada jaringan lokal. Sistem Pengendali ini dirancang untuk dapat mengirimkan paket sinyal suara (voice) dari masukan microphone dan kemudian mengirimnya menggunakan protokol ethernet dalam jaringan lokal rumah menggunakan FPGA. FPGA ini diprogram untuk mengirimkan dan mengkodekan paket data, mengkonversi data digital menjadi data analog untuk dapat mengendalikan peralatan dalam rumah. Dari hasil pengujian simulasi menggunakan ISim, terlihat bahawa sistem bekerja secara realtime.Kata kunci: smart home, suara, fpga, pengendalian AbstractSmart home is a system that uses computers and information technology to control home-like equipment such as windows and lights. The system can be a simple control system to a complex system. Computer / microcontroller based on internet/ethernet network equipped with intelligent system and automation system so as to make home to work automatically. Many computer devices / microcontrollers that can be implemented as a controller in the smart home. Smart home control system in this study using Xilinx xpartan-3e that controls the equipment in the house through LAN (Local Area Networking). This control system communicates using broadcast voice on the local network. The Controller System is designed to be able to transmit a voice signal packet from the microphone input and then send it using the ethernet protocol in the home local network using the FPGA. The FPGA is programmed to transmit and encode data packets, converting digital data into analog data to be able to control the equipment in the home. From the simulation test results using ISIM, it is seen that the system works in realtime.Keywords: smart home, voice, fpga, control

Page 9 of 129 | Total Record : 1288


Filter by Year

2014 2025


Filter By Issues
All Issue Vol 12 No 6: Desember 2025 Vol 12 No 5: Oktober 2025 Vol 12 No 4: Agustus 2025 Vol 12 No 3: Juni 2025 Vol 12 No 2: April 2025 Vol 12 No 1: Februari 2025 Vol 11 No 6: Desember 2024 Vol 11 No 5: Oktober 2024 Vol 11 No 4: Agustus 2024 Vol 11 No 3: Juni 2024 Vol 11 No 2: April 2024 Vol 11 No 1: Februari 2024 Vol 10 No 6: Desember 2023 Vol 10 No 5: Oktober 2023 Vol 10 No 4: Agustus 2023 Vol 10 No 3: Juni 2023 Vol 10 No 2: April 2023 Vol 10 No 1: Februari 2023 Vol 9 No 7: Spesial Issue Seminar Nasional Teknologi dan Rekayasa Informasi (SENTRIN) 2022 Vol 9 No 6: Desember 2022 Vol 9 No 5: Oktober 2022 Vol 9 No 4: Agustus 2022 Vol 9 No 3: Juni 2022 Vol 9 No 2: April 2022 Vol 9 No 1: Februari 2022 Vol 8 No 6: Desember 2021 Vol 8 No 5: Oktober 2021 Vol 8 No 4: Agustus 2021 Vol 8 No 3: Juni 2021 Vol 8 No 2: April 2021 Vol 8 No 1: Februari 2021 Vol 7 No 6: Desember 2020 Vol 7 No 5: Oktober 2020 Vol 7 No 4: Agustus 2020 Vol 7 No 3: Juni 2020 Vol 7 No 2: April 2020 Vol 7 No 1: Februari 2020 Vol 6 No 6: Desember 2019 Vol 6 No 5: Oktober 2019 Vol 6 No 4: Agustus 2019 Vol 6 No 3: Juni 2019 Vol 6 No 2: April 2019 Vol 6 No 1: Februari 2019 Vol 5 No 6: Desember 2018 Vol 5 No 5: Oktober 2018 Vol 5 No 4: Agustus 2018 Vol 5 No 3: Juni 2018 Vol 5 No 2: April 2018 Vol 5 No 1: Februari 2018 Vol 4 No 4: Desember 2017 Vol 4 No 3: September 2017 Vol 4 No 2: Juni 2017 Vol 4 No 1: Maret 2017 Vol 3 No 4: Desember 2016 Vol 3 No 3: September 2016 Vol 3 No 2: Juni 2016 Vol 3 No 1: Maret 2016 Vol 2, No 2 (2015) Vol 2 No 2: Oktober 2015 Vol 2 No 1: April 2015 Vol 2, No 1 (2015) Vol 1, No 2 (2014) Vol 1 No 2: Oktober 2014 Vol 1, No 1 (2014) Vol 1 No 1: April 2014 More Issue