Crude Palm Oil (CPO) merupakan salah satu minyak nabati terpenting dan paling signifikan yang di perdagangkan secara global. Harga CPO mengalami fluktuasi hampir setiap harinya yang memberikan resiko besar bagi pelaku industri kelapa sawit seperti petani, konsumen, produsen, serta investor. Sehingga diperlukan analisis prediksi untuk meminimalisir kerugian. Dalam penelitian ini, metode yang digunakan yaitu Long Short Term Memory (LSTM) yang dioptimasi dengan Adaptive Moment Estimation (Adam) untuk melakukan prediksi harga CPO berdasarkan data historis harga CPO tahun 2020-2024. Model LSTM yang dioptimasi menggunakan Adam Optimizer dan dievaluasi berdasarkan nilai Mean Absolut Percentage Error (MAPE). Hasil penelitian menunjukkan bahwa model LSTM dengan kombinasi parameter jumlah neuron 6, batch size 64, dan epoch 80 menghasilkan nilai MAPE 1,36%, yang menggambarkan hasil prediksi memiliki akurasi yang baik. Hasil ini menujukkan bahwa model LSTM yang dioptimasi dengan Adam telah menunjukkan efektivitasnya dalam melakukan prediksi harga CPO untuk aplikasi dalam penyediaan model prediksi bagi industri kelapa sawit.